
AST-Trans: Code Summarization with
Efficient Tree-Structured Attention

Ze Tang1, Xiaoyu Shen2, Chuanyi Li1, Jidong Ge1, Liguo Huang3, Zhelin Zhu1, Bin Luo1

1State Key Laboratory for Novel Software Technology, Nanjing University

2Alexa AI, Amazon

3Department of Computer Science, Southern Methodist University Dallas

2. Background

Code Summarization/Code Comment Generation

source code natural language description

Input Method Model

Code split code into tokens RNN[1] , Transformer[2]

Abstract Syntax Tree(AST) use tree-based model or GNN Tree-LSTM[3]

Linearized AST convert AST to sequence
• Pre-order Traversal(POT)
• Structure-based Traversal(SBT)
• Path Decomposition(PD)

LSTM[4] , Code2Seq[5]

1

3. Motivation

return x < 0 ? 0 : x

Return

IfExp

Compare

NameLoad(x) Lt constant(0)

body

constant(0)

orelse

NameLoad(x)

AST

Source Code

2

The length of linearized AST is much longer than source code

• Hard to learn : encoding SBT underperforms encoding source code when using Transformer[2]

• Significant computational overhead : quadratically with the sequence length in Transformer

4. AST-Trans —— Overall Architecture

POT Seq

Return

IfExp

Compare

NameLoad(x) Lt constant(0)

body

constant(0)

orelse

NameLoad(x)

AST

Relationship Matrices
ancestor-descendant

sibling

3

4. AST-Trans—— Relationship Matrices

Return

IfExp

Compare

NameLoad(x) Lt constant(0)

body

constant(0)

orelse

NameLoad(x)

AST

windowed

Compare

NameLoad(x) Lt constant(0)

Compare

NameLoad(x) Lt constant(0)

Ancestor-descendant relationship Sibling relationship

0 1 1 1

-1 0 ♾ ♾

-1 ♾ 0 ♾

-1 ♾ ♾ 0

Compare NameLoad(x) Lt constant(0)

Compare

NameLoad(x)

Lt

constant(0)

0 ♾ ♾ ♾

♾ 0 1 ♾

♾ -1 0 1

♾ ♾ -1 0

Compare NameLoad(x) Lt constant(0)

Compare

NameLoad(x)

Lt

constant(0)

P: max distance

SPD(i,j) : Shorted Path Distance between node i and j

SID(i,j) : horizontal SIbling Distance between node i and j

𝐴𝑖𝑗 = −𝐴𝑗𝑖 and 𝑆𝑖𝑗 = −𝑆𝑗𝑖

{𝐴𝑖𝑗} {S𝑖𝑗}

In AST, children nodes are orderd

4

P=1

4. AST-Trans—— Tree-Structured Attention

0 1 1 1

-1 0 ♾ ♾

-1 ♾ 0 ♾

-1 ♾ ♾ 0

Compare NameLoad(x) Lt constant(0)

Compare

NameLoad(x)

Lt

constant(0)

{𝐴𝑖𝑗}

• KP and QP are hype parameter matrices with shape (2P+1) X m

• KP
𝛅(i,j) is the 𝛿(𝑖, 𝑗)-th row of KP

• ⍺i,j = ♾ if 𝛅(i,j) = ♾ (no need to compute)

0

1
-1

KP
-1 QP

1Q(Lt) K(Compare) Q(Lt) K(Compare)

KP QP

𝜶(Lt,Compare)

0

1
-1

Disentangled Attention[6]

5

5. Model Implementation

relationship matrix

Quite Sparse

Gather with decomposed COO (GDC) Algroithm

2P+1

Linear

Concat

 Attention with
Relationship Matrix

S

A

hA + hS

Linear Linear Linear

Q K V

Dense

GDC Algorithm:

1. Decompose the matrix

2. Reorder query and key context by col_index and

row_index separately

3. Compute the attention scores

COO format

6

no need to compute
infinite positions

5. Model Implementation

=

a
b
a
pad

1
2
3
4 a

b
c
d

⊙

2
3
4
pad

1

2
pad

1

pad

b

c
d

1
2
3
4

a b c d

1
2
3
4

a b c d

1
2
3
4

a b c d

+

+

Query Key

R-1

R0

R1

1
2
3
4

a b c d

=

attention
matrix

R0 R1

+ + =

R

1) Decompose the matrix: group node pairs with the

same distance(value).

2) Reorder query and key

context by col_index and

row_index separately

3) Compute the

attention scores

-
1 -

1
-
1

1 1

1

1

1

10

0

0

0

0

0

0

0

R-1

-
1 -

1
-
1

Theorem: the number of node pairs with the same distance

length in relationship matrix will not exceed the size of the tree.

col_index row_index

2

3

4

a

b

a

V

-1

-1

-1R-1

-
1 -

1
-
1

COO

complexity: quadratically (matrix production) ->
linearly(dot production)

length
will
not
exceed
4

6. Results —— Compared with baselines

6. Results —— Complexity

Theoretical complexity Runtime and memeory cost in GPU

Reference

1. Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing Source Code using a Neural
Attention Model. ACL 2016

2. Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-based Approach for
Source Code Summarization. ACL 2020

3. Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to- Sequence Attentional Neural Machine
Translation. ACL 2016

4. Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th
Conference on Program Comprehension, ICPC 2018

5. Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating Sequences from Structured
Representations of Code. ICLR 2019

6. Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. Deberta: decoding-Enhanced Bert
with Disentangled Attention. In 9th International Con- ference on Learning Representations, ICLR 2021

THANKS

