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2. Background

Code Summarization/Code Comment Generation 

source code natural language description

Input Method Model

Code split code into tokens RNN[1] , Transformer[2]

Abstract Syntax Tree(AST) use tree-based model or GNN Tree-LSTM[3]

Linearized AST convert AST to sequence
• Pre-order Traversal(POT)
• Structure-based Traversal(SBT)
• Path Decomposition(PD)

LSTM[4] , Code2Seq[5]
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3. Motivation
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The length of linearized AST is much longer than source code

• Hard to learn : encoding SBT underperforms encoding source code when using Transformer[2]

• Significant computational overhead : quadratically with the sequence length in Transformer



4. AST-Trans —— Overall Architecture
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4. AST-Trans—— Relationship Matrices
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P: max distance

SPD(i,j) : Shorted Path Distance between node i and j

SID(i,j)  : horizontal SIbling Distance between node i and j

𝐴𝑖𝑗 = −𝐴𝑗𝑖 and 𝑆𝑖𝑗 = −𝑆𝑗𝑖

{𝐴𝑖𝑗} {S𝑖𝑗}

In AST, children nodes are orderd
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4. AST-Trans—— Tree-Structured Attention 
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• KP and QP are hype parameter matrices with shape (2P+1) X m

• KP
𝛅(i,j)  is the 𝛿(𝑖, 𝑗)-th row of KP

• ⍺i,j = ♾ if 𝛅(i,j) = ♾ (no need to compute)
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Disentangled Attention[6]

5



5. Model Implementation 

relationship matrix

Quite Sparse

Gather with decomposed COO (GDC) Algroithm 
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GDC Algorithm:

1. Decompose the matrix

2. Reorder query and key context by col_index and 

row_index separately

3. Compute the attention scores

COO format 
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no need to compute 
infinite positions



5. Model Implementation
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Theorem: the number of node pairs with the same distance 

length in relationship matrix will not exceed the size of the tree.
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6. Results —— Compared with baselines



6. Results —— Complexity

Theoretical complexity Runtime and memeory cost in GPU
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