
Neural Program Repair:
Systems, Challenges and Solutions

Wenkang Zhong, Chuanyi Li, Jidong Ge, Bin Luo

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing
University

What is NPR (Neural Program Repair)?

• APR (Automated Program Repair) aims to fix bugs
automatically.

• NPR is an emerging direction of APR that apply neural models.

• Generally, NPR frames APR as a bug-to-patch translation.

2022/7/22 2

NPR
System

static Map<Object, Object> getRegistry()
{

return REGISTRY.get() != null ?
REGISTRY.get() :,Collections.<Objec
t, Object>emptyMap();

}

static Map<Object, Object> getRegistry()
{

return REGISTRY.get();
}

end-to-end

Why focusing on NPR?

• Advantages of NPR techniques
• Remarkable performance
• Accessible resources for training

2022/7/22 3

However, understanding NPR systems is not easy.

Recently, more and more researchers are paying attention to NPR.

bug-patch pairscode repositories

mining

• Requires expertise in both APR and Deep Learning field

What we provide in this paper

• An in-detail review of previous NPR systems

• To make NPR systems more understandable,
• decompose NPR systems into a 4-phase pipeline.

• To mine potential improvements,
• analyze design choices on each phase.
• identify three challenges, discuss the current solutions.

2022/7/22 4

NPR Systems – Included Studies

2022/7/22 5

Time System Publication Channel Evaluated Language

2020 ICSE DLFix Java

2021 ICSE CURE Java

2022 ICSE RewardRepair Java

2021 PMLR TFix JavaScript

2020 ICML DrRepair C, C++

2019 TOSEM Tufano Java

2019 TOSEM CODIT Java

2019 TSE SequenceR Java

2020 ICLR Hoppity JavaScript

2019 ICLR Vasic C#,python

2020 ASE PatchEdits Java

2020 ISSTA CoCoNut Java, C, Python

2021 MSR CodeBERT-ft Java

2021 ACL(Findings) Grammar-Transformer Java

2017 AAAI DeepFix C

2021 FSE Recoder Java

16 systems in total

Java: 11
C: 3
JavaScript: 2
Python: 2
C#: 1
C++: 1

Compile Error: 2
Common Error：14

NPR Systems – Overall Procedure

Generally, NPR approaches can be decomposed into 4 phases:
• Preprocessing

• transform original programs into forms that are acceptable by neural models

• Input Representation
• encode processed input into vectors

• Output Searching
• estimate the probability of patches

• Patch Ranking
• reduce the size of candidates

2022/7/22 6

Buggy

Program

Processed

Input

1. Preprocessing Encoding

Context

Vector

Probability

Distribution

Patch

Candidates

2. Input Representation 3. Output Searching

4. Patch RankingDecoding

NPR Systems – Design Space

2022/7/22 7

Context Extraction

Code Tokenization

Feature Construction

Context Scope

Renaming Scope

Tokenize Type

Feature Content

Code Abstraction

Encoder Architecture

Decoder Architecture

Output Type

Rank StrategyCandidates Ranking

Encoding

Decoding

Sub-phase Design Choice

Preprocessing

Input Representing

Output Searching

Patch Ranking

Lexical or BPE

NPR Systems – Summary of Design Choices

2022/7/22 8

System Context Abstraction Tokenization Input Encoder Decoder Output Rank Strategy

CoCoNut Method Literal Lexical+Camel Code FConv-context FConv Code Beam Search

CODIT Node Ancestor \ Lexical
Code BiLSTM BiLSTM+copy Code

Beam Search
CFG Rule BiLSTM BiLSTM+copy CFG Rule

Cure Method Literal Camel+BPE Code PT-GPT+Fconv-context PT-GPT+Fconv Code Code-aware

CodeBERT Node Ancestor \ BPE Code CodeBERT Transformer Dec. Code Beam Search

DeepFix Method \ Lexical Code GRU GRU Code Beam Search

DLFix Method Literal Lexical AST Tree-LSTM Tree-LSTM Node DL-based

DrRepair Method \ Lexical Code, NL LSTM LSTM+copy Code Beam Search

Hoppity Method \ Lexical Graph GNN Edit Operator Node Edit Beam Search

PatchEdits Line \ BPE Code Transformer Enc.
Transformer Dec.
+copy

Code Edit Beam Search

Recoder Method Identifier Lexical Code, AST Hybrid Reader Modified TreeGen Node Edit Beam Search

RewardRepair Class \ BPE Code PT-T5 PT-T5 Code Beam Search

Tufano Method Identifier,Literal Lexical Code BiLSTM BiLSTM Code Beam Search

SequenceR Class \ Lexical Code BiLSTM BiLSTM+copy Code Beam Search

TFix Neighbor Lines \ BPE Code, NL PT-T5 PT-T5 Code Beam Search

Tang Method
Identifier

Lexical
Code Transformer Enc.

Grammar Decoder CFG Rule Beam Search
String CFG Rule Transformer Enc.

Vasic Method \ Lexical Code LSTM+copy Linear Positon+Code Beam Search

NPR Systems – Challenges

2022/7/22 9

What are motivations of various design choices?

Limit use of code-

related information

The OOV problem

Large search space

Compared with natural languages, programming languages have
richer information, such as the AST, Data Flow Graph, Control
Flow Graph……

NPR systems use a
pre-defined vocab

Public

System

Out

……

hasOwnProperty

OOV words

∄

Programming Languages have many natural elements
that can be named by programmers such identifiers and literals

Suppose: a 5000-word vocab, a 15-word output
Search space: 500015

NPR Systems – Solutions

2022/7/22 10

Limit use of code-

related information

The OOV problem

Large search space

Preprocessing

Input Representing

Preprocessing

Output Searching

Patch Ranking

add the context of the buggy program as inputs

extract additional features

use structural encoders (tree-based or graph-based)

copy mechanism

code-aware filter or DL-based filter

renaming identifiers and literals

use BPE or Camel-aware tokenization

Challenges Influenced phases Current solutions

NPR Systems – Discussion of current solutions

2022/7/22 11

Limit use of code-related information

Finding 1: The introduction of grammar rules is helpful for generating compilable patches.

Example: CODIT , Recoder, Tang

Limitation: Existing methods of introducing grammar rules are to model the input and output as

CFG rules, not a human-like way.

Future direction: Let the model learn how to follow the syntax rules when outputting code tokens.

Buggy
Program CFG rules

Compilable Rate of Outputs
⬆

Performance when dealing
with long inputs ⬇

A short code text may produce a long
sequence of CFG rules

NPR Systems – Discussion of current solutions

2022/7/22 12

Limit use of code-related information

Finding 2: Structural models can be more precise at encoding structural inputs such as the AST.

Example: DLFix, Recoder, Hoppity

Limitation: Using structural models may decrease the applicability

Future direction: Investigating the performance differences between structured input and

sequential input.

Buggy
Program

Structural Neural Models
Structural Inputs

Performance
⬆

Applicability ⬇

NPR Systems – Discussion of current solutions

2022/7/22 13

The OOV problem

Finding 1: Abstraction of source programs can efficiently reduce the size of the vocabulary, thus

mitigating the OOV problem.

Limitation: Abstraction of codes may decrease the recall rate of the NPR model.

Future Direction: More balanced abstraction methods

……
stream.flush();
stream.close();
……

……
VAR_1.METHOD_1;
VAR_1.METHOD_2;
……

Vocabsize⬇

Recall Rate ⬇

ID-replace NPR
System

What if the NPR system outputs a METHOD_3 ?

Identifier ID

flush() METHOD_1

close() METHOD_2

Identifier-ID map

NPR Systems – Discussion of current solutions

2022/7/22 14

The OOV problem

Finding 2: BPE-based tokenization also works for mitigating the OOV problem.

Limitation: BPE produces long inputs and long outputs, which are not handled well by neural

network models.

Future Direction: A combination of word-level tokenization and BPE

stream.flush(); str ea m . flu sh () ; Unknown words ⬇

Performance when dealing
with long inputs ⬇

BPE

str ea m . flu sh () ; length: 9

stream . flush () ; length: 6

NPR Systems – Discussion of current solutions

2022/7/22 15

Large search space

Finding 1: The number of candidates is not the more, the better.

Reason: Since NPR models are a kind of probability-estimation model, a larger candidate set will

have a higher probability to contain a correct patch. However, the time and cost price of large

candidate sets are usually ignored.

Future Direction: Investigating the performance-cost balance from an empirical perspective

NPR
System

Buggy
Program

Candidates

Performance
⬆

Cost ⬆

Compiling and
running test cases,
2-5 minutes

5,000
(candidate size

of CURE)A bug, with buggy project

5 days

• More rules when generating patches.

• Explicable NPR models.

• Multi-perspective evaluation.

Conclusion

Future Work

• A decompose of previous NPR systems.

• An exploration of the design space.

• A summary of major challenges.

• Discussions of current solutions and possible improvements.

2022/7/22 16

Q&A

•Thank you!

2022/7/22 17

Nanjing
University

