

Towards Just-In-Time Feature Request Approval Prediction

Feifei Niu, Chuanyi Li, Heng Chen, Jidong Ge, Bin Luo

State Key Laboratory for Novel Software Technology,

Software Institute, Nanjing University, China

Background-JITFRAP

Feature request approval prediction (FRAP): predict whether a feature request will be accepted or rejected by the software manager

Just-in-time FRAP (JITFRAP): predict as soon as it is proposed

Related Work

Nizamani et al. defined the problem as the machine learning based binary classification problem.

$$c = f(r); c \in \{approve, reject\}, r \in R$$

Ramírez-Mora et al. predicted whether an issue would success or not with the help of comments under each issue.

Characteristics

Timing Affected Just-in-time Affected by project status

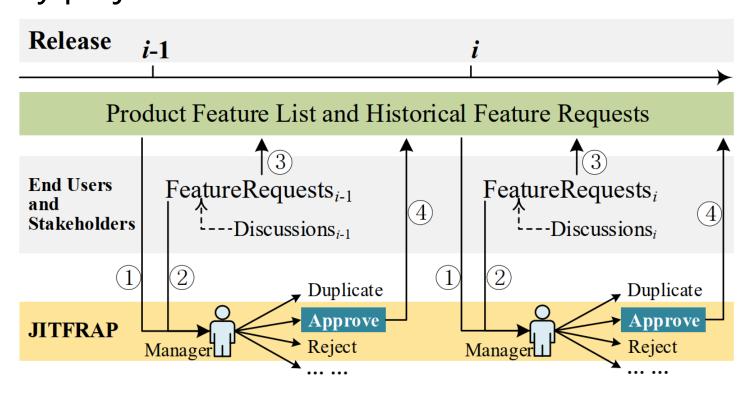


Fig. 1. Scenario of feature request approval prediction.

Data Set Generation

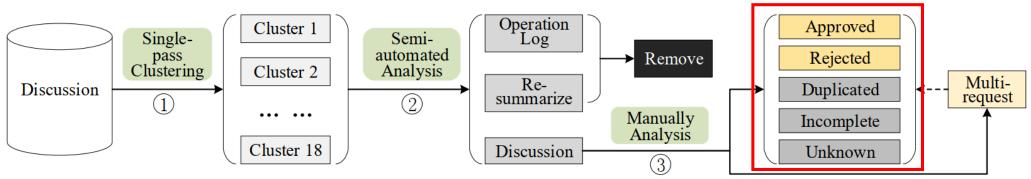


Fig. 2. Pipeline for deriving types of approval decisions from discussions.

Types	After Round 1	After Round 2	Final	
Approved	13306	13840	10727	
Rejected	4829	5224	4127	
Duplicated	1884	1906	_	
Incomplete	577	616	_	
Unknown	8166	8732	_	
Multi-Request	478	_	_	

Table 1. # of different feature requests in the data set.

Available at https://zenodo.org/record/6544368

Impact of Omitting Timing Related

Timing-related refers to that we should never train a classifier using the post-proposed feature requests to predict preproposed ones.

A1: It would be nice if we could have <u>multiple auto-type entries</u>.

B1: Consider a way to <u>sort the Auto-Type Entry</u> Selection window's content. This would be useful <u>when multiple</u> <u>entries exist</u> for the current window. Approved

A2: I think it would be nice to be able to <u>type in a password</u> to get in, if your key (floppy/usb/cd/etc.) is lost or unavailable. Approved

B2: One feature that would be incredibly helpful for using KeePass in a corporate environment would be the ability to have <u>more than one master password</u> that can open the same database, or the ability to open the same database either with a password or with a key file.

Goal: The existence of timing would influence the results.

Approved

Impact of Omitting Timing Related

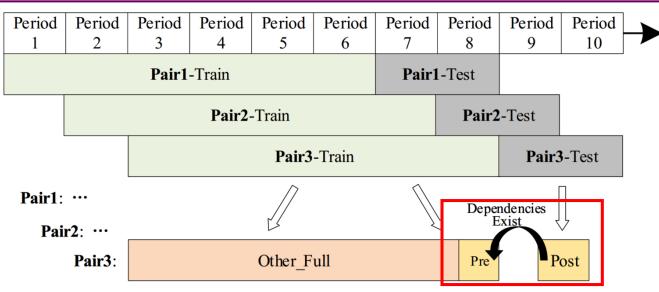


Fig. 5. Methods of preparing experimental data.

Table 2. Comparisons of omitting timing.

Train [*]	Test	Approve	ed (%)	Rejected (%)		
	Test	Precision	Recall	Precision	Recall	
Other_Full	Post	74.4	98.2	71.0	11.4	
Other_P1+Pre		74.1 ↓	98.4 ↑	69.6↓	9.9↓	
Other_Full	Pre	76.3	97.6	51.4	7.9	
Other_P2+Post		77.2 ↑	96.6↓	55.9 ↑	13.1 ↑	

For all training sets, the sizes and the ratios of Approved and Rejected data instances are the same.

Impact of Omitting Just-In-Time

Just-in-time means that upon the request is made, the prediction should be determined.

Goal: Taking comments/discussions into consideration would derive the different performance of the classifier.

Data Set	Inputut	Ар	proved(%)		Re	jected(%)	
	Inputut –	Precision	Recall	F1	Precision	Recall	F1
Our data set	Text+All_Discussion	79.0	90.55	84.4	69.51	47.2	56.2
	Text+User_Discussion	70.1	98.92	82.3	76.09	7.5	13.7
	Text	70.4	98.78	82.2	76.85	8.9	16.0
Data Set	Innut	Success(%) Fail(%)					
	Input –	Precision	Recall	F1	Precision	Recall	F1
In [10] -	Text+All_Discussion	25.1	0.24	10.7	87.59	97.1	92.4
	Text	16.7	6.7	0.5	88.03	99.8	93.3

Impact of Omitting Project Status

By status, we mean the background knowledge of the project, such as introduction, feature list, changelog, etc.

Goal: Taking the status of the project into consideration would improve the prediction performance.

Innut	Approved			Rejected			
Input -	Precision	Recall	F1	Precision	Recall	F1	
Text	70.4	98.78	82.2	76.85	8.9	16.0	
Changelog_All	67.9	47.5	54.3	73.6	63.5	66.5	
Text+Changelog_All	74.5	89.8	81.4	59.5	32.8	42.3	
Text+Changelog_Simi	72.4	97.2	83.0	75.2	18.8	30.1	

Baseline Approaches

RQ1: What are the different performances using different inputs, different feature extraction methods, and different classification algorithms?

RQ2: To what extent can automated approaches identify approved feature requests from rejected ones?

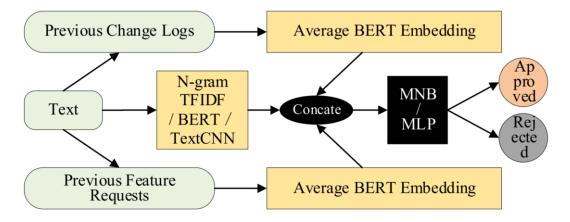


Fig. 6. Framework of the proposed basic approaches.

I. TFIDF(Text) + BERT(CL) + BERT(SimiFR) → MNB, II. BERT(Text) + BERT(CL) + BERT(SimiFR) → MLP, III. TextCNN(Text) + BERT(CL) + BERT(SimiFR) → MLP.

Experimental Results

Annroach	Innut	Feature	Algorithm -	Approved (%)			Rejected (%)		
Approach	Input	Extraction		Precision	Recall	F1	Precision	Recall	F1
	Text	TFIDF		70.4	98.8	82.2	76.9	8.9	16.0
Ι	Text+CL	TFIDF	MNB	73.0	96.7	83.2	74.9	21.7	33.7
	Full (Text+CL+SimiFR)	+ BERT		73.2	96.7	83.3	75.6	22.6	34.8
П	Text		MLP	72.0	93.9	81.5	60.0	20.0	30.0
	Text+CL	BERT	+	73.3	94.4	82.5	67.0	24.7	36.1
	Full	-	softmax	73.2	95.3	82.8	69.5	23.5	35.1
III -	Text	TextCNN		74.2	88.9	80.9	57.4	32.6	41.5
	Text+CL	- TextCNN	MLP	75.4	89.7	81.9	61.5	36.1	45.5
	Full		+	76.0	90.1	82.5	63.6	37.8	47.4
	Full w/o Simi_A	- + - BERT	softmax	79.1	79.4	79.3	54.6	54.2	54.4
	Full w/o Simi_R	DLKI		78.2	80.5	79.3	54.5	51.1	52.7

Table 4. Performances of the proposed basic approaches

Findings:

Combination of text, changelog and similar feature requests can enhance the classifier.

The best result was achieved by MLP+Full w/o Simi_A+TextCNN

Conclusion and Future Work

Conclusion:

- (1) We contribute a standard data set.
- (2) We conduct an empirical analysis with pre-experiments.
- (3) We present and discuss preliminary results of three basic approaches.

Future Work:

- (1) We will integrate duplicate/incomplete detection.
- (2) We will work to improve and expand our data set.

THANKS

Q&A <u>Feifei Niu</u>, Chuanyi Li, Heng Chen, Jidong Ge, Bin Luo

