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a b s t r a c t

Process mining is to discover, monitor and improve real processes by extracting the knowledge

from logs which are available in today’s information systems. The existing process mining al-

gorithms are based on the event logs where only the executions of tasks are recorded. In order

to reduce the pre-processing efforts and strengthen the mining ability of the existing process

mining algorithms, we have proposed a novel perspective to employ the data carried by to-

kens recorded in token log which tracks the changes of process resources for process mining

in this study. The feasibility of the token logs is proved and the results of pairwise t-tests show

that there is no big difference between the efforts that are taken by the same workflow sys-

tem to generate the token log and the event log. Besides, a process mining algorithm (τ ) based

on the new log is proposed in this paper. With algorithm τ , the mining efficiency as well as

the mining capability is improved compared to the traditional event-log-based mining algo-

rithms. We have also developed three plug-ins on top of the existing workflow engine, process

modeling and mining platforms (YAWL, PIPE and ProM) for proving the feasibility of token log

and realizing the token log generation and algorithm τ .

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

When process mining was initiated, people were often curious about the difference and commonality between data mining
and process mining. Data mining is aimed to extract or mine knowledge from a large corpus of data [7], while process mining
targets at mining process models from data represented by process execution workflows. Therefore, data is the basis for both
data mining and process mining. However, data is stored differently in these two cases. Data employed in data mining are often
stored in databases, data warehouses, World Wide Web or other information repository [7], while data used in process mining
are usually stored in logs of capturing the system workflows.

Logs used in traditional process mining research are called event logs [26]. Event logs are used to record and observe the
process workflows from the control-flow perspective. Events represent execution of tasks. When the event logs are used to mine
processes, not only three assumptions have to be satisfied [26] (see Section 2.3) but also a significant amount of efforts need to be
taken in pre-processing the logs. To eliminate the three assumptions and reduce the pre-processing efforts in mining processes
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on event logs, we here propose a new type of log named token log as the basis of process mining, which enables us to discover the
process from a novel perspective of resources produced and/or consumed in the process. A token in Petri nets [15,17] is passed
between transitions as the input or output of a transition. The token logs record the producer and consumer of tokens. The token
logs can be directly acquired from the workflow management or other related systems just like the event logs. Section 3 defines
and provides the details of the token logs.

Using token logs as the basis of process mining, we are able to save a significant amount of pre-processing effort for mining
because we no longer need to distinguish different execution instances of a system and to generate the task traces, which have
to be done in event-log-based process mining (see Section 2.3). The causal dependencies and parallel relationships among tasks
can be directly observed from the token log. Besides, additional special structures could be discovered and the mining efficiency
is improved as well. The major contributions we made in this paper are:

(1) We propose to use token logs, which can be easily generated from the information systems on the fly during the generation
of event logs, as the basis of process mining. Extra data which have never been leveraged by the existing process mining
methods are inserted into token logs to enhance both efficiency and ability of process mining.

(2) A novel process mining algorithm τ leveraging the data carried by token logs is proposed.
(3) Plug-ins for generating token logs and for implementing the mining algorithm are developed on top of the existing open

source workflow engine and process mining tools.

Although one may argue that combining all the existing event-log-based mining algorithms (α [26], α+ [4], α++ [29], β [30],
λ [28]) may deliver the comparable ability for mining certain special structures as our token-log-based mining algorithm, Three
major overheads resulted by combining multiple algorithms may compromise the mining efficiency:

(1) Different event logs are used by various mining algorithms. For example, β algorithm marks a type for each event and
λ algorithm adds the post tasks into events, while there are no type or post tasks in the event log used by α algorithm.
Hence the efforts for generating different kinds of event logs have to be taken into account.

(2) Each mining algorithm needs to be executed independently to visit all the entries in the event log for this algorithm.
Combining the results of multiple mining algorithms requires multiple iterations of event logs for different algorithms,
which duplicates the efforts of process mining.

(3) Models discovered by different mining algorithms may be different or even inconsistent. Then subsequent manual effort
will be added to resolve the difference and inconsistencies.

Our token-log-based mining algorithm successfully avoids these overheads, which makes full use of the extra data recorded
by the management systems on the fly with the generation of event logs and mines process models with the special structures
correctly and more efficiently.

The rest of this paper is laid out as follows. Section 2 presents the background of process mining, Petri nets, WF-net and event
log. Section 3 gives a detailed introduction to the token log, which leads the way to Sections 4 and 5. Sections 4 and 5 respectively
describe the objectives of using token logs and the mining algorithm τ using token logs with a case study. Section 6 evaluates
the τ algorithm and compares τ with α [26]. Section 7 discusses the limitation of applying τ . Section 8 summarizes the related
work. Section 9 concludes the paper and envisages our future work.

2. Background

This section discusses the background of process mining. Section 2.1 gives an overview of process mining. Section 2.2 intro-
duces the process modeling languages for the business processes used in this paper. Section 2.3 reviews the event logs.

2.1. Process mining

The term process mining is used for the method of distilling a structured process description from a set of real executions
in [26]. Process mining is useful for at least in two aspects. First of all, it could be used as a tool to find out how people and/or
procedures really work. Second, process mining could be used for delta analysis, i.e., comparing the actual process with some
predefined process [26]. Based on the fact that (i) the advancements of multi-core and parallel technology resulted in a spectac-
ular growth of the digital universe [2] (ii) the growth of a digital universe that is well-aligned with processes in organizations
makes it possible to record and analyze more events [3], process mining has become one of hot topics in workflow technology.

Later in [22], the intension of term process mining is officially broadened to the idea of process discovery, conformance checking
and enhancement [18,20,22]. Process discovery [21] takes an event log as input and produces a model without using any a priori
information and this is the most prominent process mining technique. Conformance checking [18] aims to identify whether the
reality, as recorded in the event logs, conforms to the model and vice versa. The idea of process enhancement is to extend or
improve an existing process model leveraging information of the actual process execution recorded in event logs. This paper is
focused on process discovery.

2.2. Petri nets and WF-net

Workflow nets (WF-nets) [25] are used in this paper for modeling workflow processes and the WF-net is a kind of Petri net.
The graph in Fig. 1 is a WF-net and also a Petri-net.
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Fig. 1. An example of WF-net and Petri-net.

Petri nets are often denoted by a 3-tuple PN = (P,T,F), where P is the set of places, T is a set of transitions and F is a set of
arcs. All the pre-elements of an element x ∈ P ∪ T are in the set ●x = {y ∈ P ∪ T|(y, x) ∈ F} and the post-elements of x are in
x● = {y ∈ P ∪ T|(x, y) ∈ F}. The element sequence x1, x2,…,xn is called a path from x1 to xn while these elements satisfy (x1, x2),
(x2, x3),…, (xn − 1, xn) ∈ F. Tokens are used in the Petri nets to simulate the dynamic and concurrent activities of systems [15].
Tokens are either placed in the places or consumed by the transitions. The presence of a token in a place indicates the holding of
a true condition associated with the place. When k tokens are held in a place simultaneously, it indicates that k data or resources
are available for post tasks of the place. The snapshot of the distribution of the tokens in all places of a net is called a marking or
state, which is denoted by M = (PN, M0), where M0 is the initial marking of PN. Transition t is enabled under marking M iff ∀p ∈
●t: M(p) ≥ 1, where M(p) denotes the number of tokens in place p under M. All the enabled tasks under marking M build up the

task set enabled (M). If a transition t is enabled, it will fire and the change of PN’s marking is denoted as M
t−→ M′. Below is the

definition of Reachable Marking based on the transformation of marking:

Definition 1 (Reachable marking [15]). Let M0 be the initial marking of Petri net PN = (P,T,F). A marking M is reachable from

M0 iff there exists a path σ = t0, t1, …, tn that satisfies M0
t0−→ M1

t1−→ M2 . . .
tn−→ M. The set of all reachable markings from M0 is

denoted by [PN, M0⟩.

In the remainder of the paper we assume that each process model is a sound WF-net. A WF-net requires the Petri net to have
(i) a single Start place (i.e., input place i), (ii) a single End place (i.e., output place o), and (iii) each node must be on one path from
Start to End [18]. The soundness property further enforces that (iv) there is no dead task, and (v) the process with only one token
in the Start place can always terminate with only one token in the End place. If a WF-net is sound then there will be no dead-lock
or live-lock in the model [18]. The initial and final states of a WF-net with input place i and output place o are denoted by [i] and
[o].

Section 4.3 introduces the important definitions of WF-nets, which motivate the employment of token logs for process mining
in details.

2.3. Event log

Process mining was originated to use system logs. Defining and unifying a system log becomes a key step for process mining.
Different mining algorithms may use different kinds of event logs that could contain slightly different information as mentioned
in Section 1.

In the event logs used by α algorithm [26], event is denoted by the item (Case ID, Task Name), where Case ID is used for
marking different execution instances of workflow systems and Task Name represents the current executing task of the event.
Here is an example event log for the process model N1 in Fig. 1 described by a set of events: Log1 = {(case 1,A), (case 2,A), (case
3,A), (case 3,B), (case 1,B), (case 1,E), (case 2,E), (case 4,A), (case 2,B), (case 2,C), (case 5,A), (case 4,E), (case 1,C), (case 3,E), (case
3,C), (case 4,B), (case 5,D), (case 5,C), (case 4,C)}. There are three key assumptions [26] for this kind of event logs: (i) each event
refers to a single task; (ii) each event refers to a case (a workflow instance); and (iii) events are completely ordered (i.e., Events
are sequentially ordered in the logs even if tasks may be executed concurrently).

To the event logs used in α algorithm, a large amount of pre-processing efforts are required. Firstly, we need to distinguish
different cases for generating task traces for all cases. For example, the task traces in Log1 are ABEC for cases 1 and 3, AEBC for
cases 2 and 4, and ADC for case 5. Then we need to recognize all the ordering relations >w [26] between tasks according to task
traces (i.e., one task directly following the other in the task trace, e.g., A > w B because of the trace ‘ABEC’ for case 1). Finally, the
causal dependencies (→w [26]) and parallel relationships (\\w [26]) are discovered by >w relations.

In the event logs used by λ algorithm [28], the event is denoted by TaskNameNumber[PostTasks] where TaskName is the cur-
rent executing task of the event, the PostTasks contains all the post tasks of the current executing task and Number is the
times of the event occurs. For example, the event log of N1 in Fig. 1 used in λ algorithm is represented by a multiset: Log2 =
{A1[BE],B1[C],E1[C],A1[D],D1[C],C2[]}. Although the causal dependencies and parallel relationships can also be derived directly
from the event log used in λ algorithm, the pre-processing effort for counting the times (field Number) that each event occurs
still needs to be taken into account. Besides, an extra step is required to differentiate the and-join from the or-join relation based
on the time of occurrence of each item. For instance, causal dependencies (B, C), (E, C) and (D, C) can be derived from the events
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e1 = B1[C], e2 = E1[C], e3 = D1[C] and e4 = C2[] in Log2. However, whether these dependencies are contained in an and-join or
or-join relations cannot be determined. Although the parallel relationship between B and E is implied by the event A1[BE], it does
not tell us whether there exists a parallel relationship between B and D, or between E and D. In this circumstance, such decision
can be made based on the times of occurrence of events. Because m(e1) + m(e3) = m(e4) and m(e2) + m(e3) = m(e4) (the function
m [28] returns the time of occurrence of the event ei), λ-algorithm can determine it is the or-joins instead of and-joins between
(B, D, C) and (E, D, C).

To eliminate the pre-processing efforts in generating task traces as well as extra steps for differentiating the and-join from the
or-join when event logs are used for process mining, we propose that process mining can be done more effectively and efficiently
based on token logs where additional data are leveraged as described in the next section.

3. Token log

3.1. Motivation and feasibility of token log

Tokens are created in Petri nets to represent various kinds of resources that are produced and/or consumed in a process. We
aim to leverage data carried by tokens in process mining to track the state changes and footprints of resource usage in real world
systems. The interesting questions are (1) why and how token logs can be leveraged for process mining; and (2) whether it is
feasible to generate token logs without extra effort.

Motivation. There are many kinds of pre-conditions of tasks in business processes that provide various types of resources to
trigger the task execution, such as timing, personnel and other resources. We reckon that if these conditions could be recorded in
the logs with their producers and consumers, then the causal dependencies between tasks would be easily captured. Although
there are many kinds of conditions, it would be ideal to use a unified entity in the process model to represent all these conditions
to mine the dependencies among tasks. Token used in Petri-nets is a proper candidate. Various definitions and usage of tokens
in Petri nets for process mining have been presented in previous studies (e.g., [18, 19]). A token is produced by a transition and
consumed by its post transition and there is a causal dependency between these two transitions. If the token in the process
models could have been utilized and augmented with extra data, we would be able to mine the task dependencies via the
augmented tokens. For example, when a token is produced the name of its producer can be inserted into the token and when
it is consumed the name of the consumer can also be added. Then the causal dependency between the token’s producer and
consumer can be directly derived from the token.

Feasibility. It is widely accepted that data in the event logs are already in the workflow systems while the systems are running.
A natural question to ask is whether additional effort is incurred to generate token logs as compared to event logs. Fortunately,
similar to event logs, data in the token logs are also readily available in real world workflow systems. Therefore, no extra effort
is needed to generate the data for token logs. The data in token logs and those in event logs are simply collected on the fly from
different perspectives of the running workflow systems. We have embedded a plug-in for making token logs in the workflow
engine YAWL (Yet Another Workflow Language1) to show the feasibility of generating token logs and Fig. 3 shows the working
theory of this plug-in.

As shown in Fig. 2, in order to develop the plug-in in YAWL, we mainly modify three classes and they are YNetRunner, YTask
and YCondition. The YEngine class is used to create new YNetRunner objects for managing each newly started case. The method
initToken() is added in the class YNetRunner for initializing tokens which would be used in the new cases. The methods comsume(),
print() and produce() are the main methods added in class YTask for making token logs. Method consume() is used to consume
some tokens from the input YCondition objects while a YTask object is ready to start and the consumers of the input tokens are set.
Method print() will record the information of the tokens in logs after they are consumed. Before exiting its execution, the YTask
object will create enough new tokens and put them into its output YConditions after setting their producers through method
produce(). In class YCondition, a new member variety, list of tokens, and its setter and getter are added for managing the tokens
passing it. With all these changes in YAWL engine, we can derive the token log which is defined in Section 3.2.

Section 6.1.2 compares the time taken to generate the event log and token log respectively and demonstrates that no addi-
tional effort is incurred to generate the token log.

3.2. Data carried by token

The log as the basis of mining shall contain sufficient amount of information to differentiate the three basic structures in
processes and they are sequence, selection and concurrent. Sequence means two tasks are connected through one place directly
(i.e., Fig. 3(a)) and this indicates causal dependency between these two tasks. A selection contains a place with one input task and
two or more output tasks (i.e., Fig. 3(b)), or one or more input task and one output task (i.e., Fig. 3(c)). The special of a concurrent
structure is the task with two or more output places (i.e., Fig. 3(d)) or input places (i.e., Fig. 3(e)).

Leveraging the data carried by tokens, sequence structures can be immediately captured by analyzing causal dependencies
between tasks. In the selection and concurrent structures, the tasks which produce and consume tokens (resources) are identical
so that simply relying on information of the tasks that produce and consume the resources cannot differentiate these two process

1 YAWL is described at and can be downloaded from http://www.yawlfoundation.org/.

http://www.yawlfoundation.org/
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Fig. 2. The working theory of the plug-in for making token logs in YAWL.

(a) (b) (d)(c) (e)
Fig. 3. Basic structures in processes: (a) sequence, (b and c) selection, (d and e) concurrent.

structures. However, we notice that the selection structure only produces one token while the concurrent structure produces the
same number of tokens as the number of parallel branches. Therefore, if we can gather all the tokens produced by the input task
in a concurrent structure during its single execution, then we can differentiate a concurrent structure from a selection one. Hence,
we need a notation in token to uniquely identify in which execution of the producer the token is produced. We name the notation
as Execution ID (EID) which uniquely identifies each execution of the task. We specifically define Execution ID as:

Definition 2 (Execution ID, EID). Execution ID denoted by EID, is used to uniquely identify every execution of a task.

The token log shall not only record the names of resource producers and consumers but also the producers’ and consumers’
EIDs in order to be useful for mining the sequence, selection and concurrent structures. With the EID in the token log, we can tell
that (1) there is at least a sequence structure between the producer and consumer of each token; (2) there is a selection structure
between the producers and the consumers of tokens whose producers are the same but both producers’ EIDs and consumers are
different; (3) there is a concurrent structure between the producers and the consumers of tokens whose producers and producers’
EIDs are both the same but consumers are different.

Table 1 is an example token log for N1 in Fig. 1 and the token listed in the token log is defined as follows.

Definition 3 (Token). A token is row in a token log and denoted by a quadruple t = (PT, CT, PEID, CEID). PT is the producer of
the token and CT is the consumer. PEID is the EID of PT which produces the token and CEID is the EID of CT which consumes the
token. There are four operations that can be performed on a token: PT = fpt(t), CT = fct(t), PEID = fpeid(t), CEID = fceid(t).

Note that some elements in the token quadruple (i.e., producer, consumer, producer EID, and consumer EID) can be null as
shown in Table 1, which usually indicates the initialization and termination of a process execution. When a process is initialized,
some tokens are inserted into the input place. When a process is terminated, the remaining tokens stay in the output place
without being consumed. All the tokens in the log form a Token set that is defined as follows.

Definition 4 (Token set, TS). Token set, TS = {tk1, tk2, …, tkn}, is the set of all tokens in the token log.
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Table 1

The token log of the process model N1 in Fig. 1.

Producer Consumer Producer Consumer

execution ID execution ID

Null A Null 1

A B 1 2

A E 1 3

B C 2 4

E C 3 4

C Null 4 Null

Null A Null 5

A D 5 6

A D 5 6

D C 6 7

D C 6 7

C Null 7 Null

Capture
Post TasksInitial

System
Log

Count
Occurrence
Times

Event
Log

Event
Log

Generate
Task
Traces

Task
Traces
for
Cases

Recognize
>w Set of

>w

Set of→w

Set of \\w

Set of→w

Set of \\w

Token
Log

YwXw

Compute Xw

Compute Xw
Differentiate Joins

Reduce

Fig. 4. Comparing the process mining workflows of α and λ algorithms on event logs with the mining workflow on token logs.

In the remaining sections, we will use EID, token and Token set (TS) to explain how data carried by tokens can be employed
to enhance the effectiveness and efficiency of process mining.

4. Objectives

The three main objectives of leveraging the compressed token log in process mining is to simplify the process mining, im-
prove the efficiency of mining algorithm by reducing the size of input logs, and enhance the capability of mining more special
structures.

4.1. Objective 1: simplifying process mining

As analyzed in Section 2.3, when using event logs defined in α algorithm, causal dependencies and parallel relationships
between tasks cannot be derived directly from the logs. Two pre-processing steps (i.e., Generate Task Traces and Recognize >w),
as shown in Fig. 4, are necessary for discovering causal dependencies and parallel relationships. Another extra step is to compute
the intermediate set Xw [26] (Compute Xw in Fig. 4) to generate the set of the pre and post task pairs for places (Yw [26]) (Reduce).

λ algorithm adds the post tasks of the current executing task into the event logs. But the post tasks cannot be derived directly
from the workflow management systems because the subsequent task to be executed cannot be determined when the current
one is still running. Therefore, as shown in Fig. 4, the pre-processing efforts for capturing post tasks from initial system logs to
generate events (Capture Post Tasks) and counting the times of occurrence of each event (Count Occurrence Times) are required.
Besides, the step for differentiating and-join from or-join by the time of occurrence of events (Differentiate Joins) is also necessary
(see Section 2.3).

Nevertheless, by leveraging data recorded in token logs, we simplify process mining by skipping the steps of Generate
Task Traces, Recognize >w, Compute Xw, Capture Post Tasks, Count Occurrence Times, Differentiate Joins and Reduce as shown in
Fig. 4. Section 5 will describe a novel process mining method leveraging data carried by token logs. Section 6.2 will evaluate the
execution time between process mining based on event logs and token logs.
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Fig. 5. Patterns of implicit dependencies that are described in [4].

4.2. Objective 2: reducing log size

Although it was mentioned in [28] that the size of the event log with post tasks was much smaller than that of the event log
used in α algorithm, these event logs were actually generated from the initial system logs in much larger sizes. We reckon that to
make a fair comparison of the log sizes, the initial system logs used to generate the event logs in λ algorithm shall be considered.
Since it has been widely accepted that the event log used by α is the most basic event logs of workflow processes up to now, the
initial system logs used by λ shall be generated from the event log used by α. Hence the sizes of logs used by λ cannot be smaller
than the event logs used in α considering the sum of the log sizes of the its initial system logs (i.e., the event logs used by α) and
the generated event logs (i.e., the event logs used by λ). In addition, since the event logs used in α+, α++, and β are extended
from those used in α, their sizes must be larger than the log sizes of α. Therefore, we will only need to compare the size of the
token log with that of event logs in α.

For the same process model, the token logs usually contain fewer entries than the event logs used by α algorithm. For example,
the event log used by α algorithm (Log1 in Section 2.3) of N1 in Fig. 1 requires 11 entries while the token log (Table 1) has only
10 entries. Hence we hypothesize that the size of the token log is smaller than that of the event log for mining the same process
model. Section 6.2 details the evaluation of the reduced log size.

4.3. Objective 3: handling more special structures

In order to describe the improvements made by our algorithm more understandable, we define four related process structures
here first and they are implicit dependency, implicit place, SWF-nets, one-loop-free workflow net, and two-loop-free workflow net.

Definition 5 (Implicit dependency [29]). Let PN = (P,T,F) be a sound WF-net with input place i and output place o. ∀a,b ∈ T, there
is an implicit dependency between a and b iff: (1)a● ∪ ●b ̸= Ø, (2) !M ∈ [PN, [i]⟩ ⇒ a ∈ enable(M) ∧ b ∈ enable(M − ●a + a●),
(3)∃M ∈ [PN, [i]⟩ ⇒ a ∈ enable(M), and ∃M′ ∈ [PN,M − ●a + a●⟩ ⇒ b ∈ enable(M′).

Fig. 5 shows the structure patterns of implicit dependency described in [4], where there is an implicit dependency between
A and B. As described in [4,26,29–31], it is difficult to use event logs to mine these implicit dependency structures and it is not
guaranteed that all the patterns can be discovered. But with token logs, we can easily discover all patterns of implicit dependen-
cies.

Definition 6 (Implicit place [26]). Let PN = (P,T,F) be a sound WF-net with an initial state [i], ∀p ∈ P is an implicit place iff: ∀M ∈
[PN, [i]⟩, ∀t ∈ p●⇒ if M≥●t \{p} then M ≥ ●t.

The pattern of the implicit place is very similar to the implicit dependency. The major difference is that if the implicit place is
removed from the process, the behavior of the process will not change.

Definition 7 (SWF-net [26]). A WF-net PN = (P,T,F) with initial state Mi is a SWF-net (Structured Workflow Net) iff: (1)∀p ∈
P ∧ ∀t ∈ T ⇒ if (p,t) ∈ F ∧ |p●| > 1 then |●t| = 1, (2) ∀p ∈ P ∧ ∀t ∈ T ⇒ if (p,t) ∈ F ∧ |●t| > 1 then |●p| = 1, (3) there are no implicit
places (Definition 6).

Defining SWF-net here is used for illustrating the non-SWF-net (i.e., a WF-net contains one or more kinds of structures forbid-
den in SWF-net) which is used in describing the improvements made by our algorithm in mining ability. The patterns forbidden
in SWF-net are shown in Fig. 6(a–c). Specifically, the second pattern (i.e., the parallelized input places of the same task have multi
inputs) is named as parallel places with multi inputs.
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Fig. 6. (a and b) The first and second patterns forbidden in SWF-net; (c) pattern of implicit place; (d) structure forbidden in one-loop-free WF-net; (e) structure

forbidden in two-loop-free WF-net.

Definition 8 (One-loop-free workflow net [4]). Let PN = (P,T,F) be a workflow net. PN is a one-loop-free workflow net iff ∀t ∈ T ⇒
t● ∪ ●t = Ø.

Definition 9 (Two-loop-free workflow net). Let PN = (P,T,F) be a workflow net. PN is an two-loop-free workflow net iff !t1,t2 ∈
T ⇒ t1● ∪ ●t2 ̸=Ø ∧ t2● ∪ ●t1 ̸= Ø.

The structures defined in Definitions 8 and 9 are shown in Fig. 6(d and e) respectively.
All the existing mining algorithms have some restrictions in defining their mining ability. For instance, (1) α cannot mine

implicit dependency, implicit places in non-SWF-nets, one-loop or two loop; (2) α+ cannot mine implicit dependency or implicit
places; (3) α++ cannot mine some of implicit dependencies, one-loop or two-loop; (4) β cannot mine implicit places in non-SWF-
nets; and (5) λ cannot mine all implicit places or parallel places with multi inputs in non-SWF-nets. The algorithm τ proposed
in this paper, which utilizes data carried by the token log, outperforms the existing algorithms in mining these four special
structures. It has been explained in Section 1 that even if the combination of all the existing mining algorithms may be able
to mine a majority of these special structures, our method using the token log still wins out by eliminating the three major
overheads of running multiple mining algorithms. No wonder that none of the existing mining algorithms on event logs can
mine all implicit places in non-SWF-nets.

So, the new mining algorithm τ is more effective than other event-log-based algorithms (i.e., α [26], α+ [4], α++ [29], β [30],
λ [28]) in mining (1) implicit dependency, (2) non-SWF-nets including parallel places with multi inputs and implicit places, (3)
WF-nets with one-loop, and (4) WF-nets with two-loop. Section 5.3 will demonstrate τ algorithm’s ability in mining all these
special structures through a case study and a formal proof will be presented in Section 6.4.

5. Approaches

Existing process mining algorithms discover the pre and post tasks of all the places in the process model (Yw) via mining the
causal dependencies and parallel relationships among tasks from the event log and then reconstruct the entire process model.
We here propose a novel algorithm (τ ) that is able to mine the process model leveraging data carried by the token logs defined
in Section 3. In this section, we first introduce the definitions and data structures based on which the τ algorithm is developed.
Then we elaborate the pseudo code of the algorithm. Finally, we present a case study to demonstrate how the τ algorithm can be
employed to mine special process structures.

5.1. Basic definitions and data structures

Causal dependencies and parallel relationships among tasks are defined differently in different kinds of logs. In event logs,
causal dependencies and parallelism are defined based on the ordering relation >w between tasks in task traces. In token logs,
the causal dependency and parallelism are defined as follows.

Definition 10 (Causal dependency). Let TS = {t1, t2, …, tn} be the token set of WF-net PN = (P,T,F), and a,b ∈ T. The causal
dependency between tasks is denoted by ‘→w’ and a → wb iff: ∃ti ∈ TS ⇒ a = fpt(ti) ∧ b = fct(ti).

Definition 11 (Parallelism). Let TS = {t1, t2, …, tn} be the token set of WF-net PN = (P,T,F), and a,b ∈ T. The parallelism between
tasks is denoted by ‘||w’ and a||wb iff ∃ti,tj ∈ TS ⇒ [a = fct(ti) ∧ b = fct(tj) ∧ fpt(ti) = fpt(tj) ∧ fpeid(ti) = fpeid(tj)]∨[a = fpt(ti) ∧ b =
fpt(tj) ∧ fct(ti) = fct(tj) ∧ fceid(ti) = fceid(tj)].

As described in Section 3, each token entry includes the producer and consumer execution IDs (EIDs) of the token (resource)
so that the causal dependency between the pre and post tasks of the place containing the token can be retrieved directly from
the token log entry. We can then merge the token entries belonging to the same place to obtain the pre and post task sets of each
place. In order to simplify the description of algorithm τ , we first define two data structures to describe the pre and post tasks of
the place in Definitions 12 and 13.

Definition 12 (Pre–post contents of place, PPCP). Let TS = {t1, t2, …, tn} be the token set of WF-net PN = (P,T,F), and p ∈ P, then
PPCP = (PrTS, PoTS, PrEIDS, PoEIDS) is the pre–post contents of p, where the four elements are sets of pre tasks, post tasks, EIDs of
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Table 2

Method Merge.

Merge: Merge a token into the PPCP

Input: Token t0 = (pt, ct, peid, ceid), PPCP = (PrTS, PoTS, PrEIDS, PoEIDS)

Output: PPCP = (PrTS, PoTS, PrEIDS, PoEIDS)

Begin:

if pt ∈ PrTS

if ct ∈ PoTS

if peid ̸∈ PrEIDS

PrEIDS.add(peid), PoEIDS.add(ceid)

Change status: t0→1

end if

else

if peid ̸∈ PrEIDS

PoTS.add(ct), PrEIDS.add(peid), PoEIDS.add(ceid)

Change status: t0→1

end if

endif

else

if ct ∈ PoTS

if ceid ̸∈ PoEIDS

PrTS.add(pt), PrEIDS.add(peid), PoEIDS.add(ceid)

Change status: t0→1

endif

endif

endif

End

pre and post tasks of p, respectively, iff: ∀a ∈ PrTS ∧ b ∈ PoTS ⇒ ∃ti ∈ TS ∧ fpeid(ti) ∈ PrEIDS ∧ fceid(ti) ∈ PoEIDS. Then p = p(PrTS, PoTS).
There are four operations on p for retrieving each element in PPCP: (1) fprt(p) = PrTS; (2) fpot(p) = PoTS; (3) fpreid(p) = PrEIDS; (4)
fpoeid(p) = PoEIDS.

Definition 13 (PPCP set, PSet). PSet = {PPCP0, PPCP1, …, PPCPn} is called the PPCP set of WF-net PN = (P,T,F) iff ∀p ∈ P ⇒ ∃PPCP =
(PrTS, PoTS, PrEIDS, PoEIDS) ∈ PSet ∧ p = p(PrTS, PoTS).

5.2. Mining algorithm

The main step of τ algorithm is to identify the tokens passing the same place during the executing of the process according
to the relations between tokens. If tokens are passing a same place, then they shall be merged into the same PPCP (pre–post
contents of place, a quadruple consisting of pre tasks, pre tasks’ EIDs, post tasks, and post tasks’ EIDs of a place as defined in
Definition 12). We have developed an auxiliary method Merge in Table 2 to realize this in τ algorithm. The inputs of Merge are a
token and a PPCP and the output is the PPCP. In Merge, the token’s producer is added into PrTS (the pre task set of a place) of the
PPCP based on the relation between the producer and PrTS. The token’s consumer is added into PoTS (the post task set of a place)
of the PPCP based on the relation between the consumer and PoTS.

With the definition of Merge, we can now describe the τ algorithm for mining the process model on the token log using the
following pseudo code.

Definition 14 (Mining algorithm τ ). The following pseudo code describes how the process model w can be mined based on the
token log recorded from the executing system. Tw is the task set of the model. TS is the token set in the token log. PSet is the set
of all PPCPs (pre–post contents of place) for the places in the model. Pw is the set of pre and post task pairs of all places and Fw is
the set of all the arcs in the model.

1. Tw = {t0, t1, …, tn}
2. TS = {tk0

0,tk1
0, …, tkm

0}
3. Generate PSet from TS:

for i from 0 to m do:
(a) if tki

s == 1 then continue, else do (b).
(b) for PPCP in PSet, merge tki

s into PPCP using method Merge;
if tki

s == 1 then continue, else do (c);
(c) Build PPCP with tki

s: merge tki
s into PPCP using method Merge; continue.

4. Form Pw and Fw with PSet = {p1, p2, …, pk}:
Pw = {p(PrTS, PoTS)|∃j ∈ (0, k) ⇒ PrTS = fprt(pj) ∧ PoTS = fpot(pj)}
Fw = {(t,p)|∀p ∈ Pw, t ∈ fprt(p)} ∪ {(p,t)|∀p ∈ Pw, t ∈ fpot(p)}

5. Form the model: w = (Pw, Tw, Fw)
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Fig. 7. A process model with the special structures (in colors) that cannot be completely discovered by the existing event-log-based process mining algorithms

but can all be mined by token-log-based τ algorithm (red: implicit dependency; green: one-loop; blue: two-loop; deep-red: implicit place; purple: parallel

places with multi inputs). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Next, we will demonstrate how our τ algorithm and the data carried by the token log can be used in tandem to mine a process
model through a case study on a hypothetical process model.
5.3. A case study and experiments

We have experimented τ algorithm on the token log in Table 1 (i.e., the log of the process model N1 in Fig. 1) to demonstrate
its feasibility and effectiveness as well as to explain each step of applying τ . Through this case study, we would also like to
demonstrate how the data carried by token log can be used at each step of process mining, for which we will show the change of
the set of pre and post contents of places (PSet, which stands for the PPCP set in Definition 13) and the set of unhandled tokens
(UHT) following each step of the algorithm. The following shows the steps of applying algorithm τ to Table 1 with the results of
PSet and UHT bolded.

1. Form Tw, Tw = {A,B,C,D,E};
2. Form TS, TS = {(,A„1)0,(A,B,1,2)0,(A,E,1,3)0,(B,C,2,4)0,(E,C,3,4)0,(C„4„)0,(,A„5)0,(A,D,5,6)0,(A,D,5,6)0,(D,C,6,7)0,(D,C,6,7) 0,(C„7„) 0}
3. Form PSet. The UHT is used. Initially: PSet = Ø, UHT = TS.

3.1. Turn tk = (,A„1)0 to PPCP = ({},{A},{},{1}). Then (,A„5)0 is merged into PPCP. PSet = {({},{A},{},{1,5})}. UHT =
{(A,B,1,2)0,(A,E,1,3)0,(B,C,2,4)0,(E,C,3,4)0,(C„4„)0,(A,D,5,6)0,(A,D,5,6)0, (D,C,6,7)0,(D,C,6,7)0,(C„7„)0}.

3.2. No PPCP in PSet can merge tk = (A,B,1,2)0 and turn it to PPCP = ({A},{B},{1},{2}) and merge remaining tokens in
TS. PSet = {({},{A},{},{1,5}),({A},{B,D},{1,5},{2,6})}. UHT = {(A,E,1,3)0,(B,C,2,4)0,(E, C,3,4)0,(C„4„)0,(A,D,5,6)0,(D,C,6,7)0,
(D,C,6,7)0,(C„7„)0}.

3.3. Let tk = (A,E,1,3)0, then merge tk. PSet = {({},{A},{},{1,5}),({A},{B,D},{1,5},{2,6}),({A},{E,D},{1,5},{2, 6})}. UHT =
{(B,C,2,4)0,(E,C,3,4)0,(C„4„)0,(D,C,6,7)0,(D,C,6,7)0,(C„7„) 0}.

3.4. Let tk = (B,C,2,4)0, then merge tk. PSet = {({},{A},{},{1,5}),({A},{B,D},{1,5},{2,6}),({A},{E,D},{1,5}, {2,6}),({B,D},{C}{2,6},
{4,7})}. UHT = {(E,C,3,4)0,(C„4„)0,(D,C,6,7)0,(C„7„) 0}.

3.5. Let tk = (E,C,3,4)0, then merge tk. PSet = {({},{A},{},{1,5}),({A},{B,D},{1,5},{2,6}),({A},{E,D},{1,5}, {2,6}),({B,D},{C},{2,6},
{4,7}),({E,D},{C},{2,6},{4,7})}. UHT = {(C„4„)0,(C„7„) 0}.

3.6. Let tk = (C„4,)0, then merge tk. PSet = {({},{A},{},{1,5}),({A},{B,D},{1,5},{2,6}),({A},{E,D},{1,5}, {2,6}),({B,D},{C},{2,6},
{4,7}),({E,D},{C},{2,6},{4,7}),({C},{},{4,7},{})}. UHT = Ø.

4. Form Pw and Fw from PSet. Pw = {i = p({},{A}),P2 = p({A},{B,D}),P1 = p({A},{E,D}),P4 = p({B,D},{C}),P3 = p({E,D},{C}),o = p({C},{})}. Fw =
{(i,A),(A,P2),(A,P1),(P2,B),(P2,D),(P1,D),(P1,E),(B,P4),(D,P4),(D,P3),(E,P3),(P4, C),(P3,C),(C,o)}.

5. Construct the process model w: w = (Pw, Tw, Fw).

Further, we have conducted an experiment of τ on another hypothetical process model (N2 in Fig. 7) containing various special
structures that none of the existing process mining algorithms can completely discover. As mentioned earlier, α [26] cannot mine
one-loop, two-loop and implicit dependency, α+ [4] cannot mine implicit dependency, α++ [29], β [30] and λ [28] cannot mine
non-SWF-nets. We have implemented τ algorithm by developing two plug-ins on the two open source tools for process modeling
and mining, PIPE (Platform Independent Petri Net Editor, graphical tool for drawing and analyzing Petri nets2) and ProM (Process
mining, the framework for process mining3), which will both be used in our experiment.

2 PIPE can be downloaded from http://sourceforge.net/projects/pipe2/.
3 ProM is described at http://www.processmining.org/ and can be downloaded from http://www.promtools.org/prom6/.

http://sourceforge.net/projects/pipe2/
http://www.processmining.org/
http://www.promtools.org/prom6/
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Fig. 8. Define N2 and generate its token log in PIPE.

Fig. 9. The process model mined by the TokenLog Mining Plug-in in ProM based on the token log of N2.

Before explaining how to mine these four special structures, we first illustrate the steps of using the two plug-ins in PIPE and
ProM in this experiment.

Step 1. Define the process N2 in PIPE (see Fig. 8) and generate the token log by monitoring the execution of the process with
the plug-in in PIPE.

Step 2. Import the token log captured by PIPE into ProM and choose the TokenLog Mining Plug-in in ProM for τ .
Step 3. Execute the TokenLog Mining Plug-in in ProM to obtain the mined process model (see Fig. 9).
The experiment result shows that implicit dependencies, non-SWF-net, and WF-nets containing one-loop and two-loop can

now be correctly discovered by τ algorithm with the token log. Later, the mining ability of algorithm τ will be proved formally
in Section 6.4.

Besides mining the hypothetical process model in Fig. 7, we have also applied the τ algorithm to mine the process model
from the token log of a real world workflow system (i.e., Patient Registration System used in many hospitals in China as shown in
Fig. 10) which also contains all of the aforementioned special structures. Our experiment results with the PIPE and ProM plug-ins
show that all the special structures in the Patient Registration System can be correctly mined by the token-log-based τ algorithm.

6. Evaluations

6.1. Experiment setup and data collection

6.1.1. Experiment setup
In the following subsections, we will evaluate the τ algorithm on each of our three objectives to develop the new token-log-

based process mining method as presented in Section 4. To evaluate the scalability and performance of the τ algorithm, we have
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Fig. 11. Nine process models executed to compare the time of generating token logs and event logs.

conducted experiments to (1) compare the execution time between τ , α and λ; (2) compare the size of the token log with the
event logs used by other algorithms. Finally, we will provide a formal proof that the four special structures can be completely
mined by τ but not by the existing algorithms. Note that we have already presented our experiment results of mining the four
structures in a hypothetical process model as well as in a real world patient registration process earlier in Section 5.3.

We conducted the experiments on the Intel(R) Core(TM) i3 computer with 4GB Memory and 32-bit Windows 7. PIPE 4.2.1
and ProM 6.3 were used in the experiments.

6.1.2. Data collection
We have described the approach of adding data carried by tokens into token logs for process mining in Section 3.1. Another

interesting question is how easy it is to generate token logs as compared with traditional event logs. Next we will compare the
time taken to generate the two kinds of logs for the same process models in Fig. 11 using the PIPE plug-in (see Section 5.3) which
monitors the process execution.

Since the entries in the token log or event log are printed during task executions, it is difficult to measure the time only spent
on printing logs. Therefore, instead, we measure the time taken to execute the entire process during which a token log or event
log is printed respectively, as the log generation time. Each of the two logs is generated for ten times during the execution of each
process model in Fig. 11 in order to eliminate the experimental errors and each log contains two running cases of the process.
Table 3 lists the log generation times (ns).

We performed the pairwise t-tests on the log generation times for each of the 9 process models (see Table 3) and the null
hypothesis is that times used for generating token logs are significantly different from those used for generating event logs. The
results of the tests are shown in Table 4. It tells that the times taken to generate the token logs are a bit more than those used
to generate the event logs, but we do not observe any statistical significance of the time differences since all the P-values are
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Table 3

Time (ms) for generating the token log (TL) or event log (EL) from each of the 9 process

models in Fig. 11.

Process models Experiment no.

1 2 3 4 5 6 7 8 9 10

(1) TL 15 15 16 16 16 16 16 16 16 15

EL 15 16 15 16 16 15 16 16 16 16

(2) TL 15 32 15 31 15 31 15 15 16 16

EL 15 16 15 16 31 16 16 16 16 16

(3) TL 15 15 15 15 31 15 15 31 15 15

EL 31 15 15 16 16 15 16 16 16 15

(4) TL 33 31 16 31 32 31 33 48 33 32

EL 32 16 31 31 31 31 33 31 31 32

(5) TL 16 33 32 33 31 32 31 48 32 31

EL 31 32 33 31 33 32 32 32 32 16

(6) TL 32 33 48 32 48 48 32 48 32 33

EL 31 32 47 32 32 32 48 47 31 32

(7) TL 48 32 48 48 33 47 47 32 48 32

EL 31 32 32 47 46 48 48 47 32 48

(8) TL 48 48 48 48 47 32 33 47 48 47

EL 33 48 48 33 46 47 48 48 48 47

(9) TL 48 32 32 48 48 32 48 48 48 48

EL 48 32 48 48 32 47 48 32 47 48

Table 4

Results of pairwise t-tests applied to times taken to generate the token log (TL) and

event log (EL) for each of the 9 process models in Fig. 11.

Pairs Paired differences P-values

Mean Standard deviation Standard error mean

(1) TL–EL 0.00000 0.66667 0.21082 1.000

(2) TL–EL 2.80000 9.91968 3.13688 0.395

(3) TL–EL 1.10000 8.79962 2.78268 0.702

(4) TL–EL 2.10000 8.82484 2.79066 0.471

(5) TL–EL 1.50000 8.78446 2.77789 0.602

(6) TL–EL 2.20000 8.97899 2.83941 0.458

(7) TL–EL 0.40000 12.70346 4.01719 0.923

(8) TL–EL 0.00000 10.01110 3.16579 1.000

(9) TL–EL 0.20000 10.50714 3.32265 0.953

far greater than 0.05. So the hypothesis is rejected which means there is no significant difference between the times used in
generating token logs and those used in generating event logs.

The tokens logs and event logs generated here will be used in the experiments for comparing the executing time between
algorithm τ and algorithms α and λ in Section 6.2.

6.2. Objective 1: simplifying the mining process—executing time

As shown in Fig. 4, leveraging token logs eases process mining by skipping several steps. In this subsection, we would like to
show our experiment results of comparing the executing time of different algorithms (α, λ and τ ) for mining the nine process
models in Fig. 11. Considering that the event logs used by λ algorithm cannot be directly derived from the workflow systems,
the times used for generating them are taken into account. Since the mining algorithms α+, α++, β , are extensions of α, which
means that their efficiencies are not as good as α, so the comparison between these algorithms and τ is omitted.

The execution time of the algorithm on each of the nine process models is measured to cover the steps of the corresponding
algorithm shown in Fig. 4. We repeat the mining work for each algorithm on each process model for 7 times in order to eliminate
the experimental errors. Table 5 lists the experiment results. Fig. 12 illustrates the increasing average execution time of all three
algorithms (α, λ and τ ) with the increasing complexity of the process models. It shows that the execution time of τ is consistently
lower than both α and λ. We perform the pairwise t-tests on the execution time between (α, τ ) and (λ, τ ) and the null hypotheses
are: (1) algorithm α uses significantly more time than τ in handling models in Fig. 11, and (2) algorithm λ uses significantly more
time than τ in handling models in Fig. 11. The results of t-tests are shown in Table 6.

According to Fig. 12, the average executing times used by α and λ are longer than used by τ in general. That all Sig.(2-tailed)s
(i.e., P-values) of t-tests in Table 6 are less than 0.05 indicates the null hypotheses should not be rejected, which means executing
times used by α and λ are really more than those used by τ in mining models. Taking the standard. deviations in Table 6 into
consideration, it is concluded that the efficiency of τ is significantly higher than those of α and λ.
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Table 5

Comparison of execution time (ns) of α, λ and τ in mining the 9 process models in Fig. 11.

Model 1 2 3 4 5 6 7

(1) α 6158020 4237907 3575441 8164833 12221306 4805973 8348274

τ 97746 144611 297926 148628 324705 151641 176747

λ 340773 347132 329391 338763 575764 308302 317675

(2) α 8789472 11131367 5753310 11252546 12466342 6130906 12080712

τ 379270 333074 328723 536600 325375 342112 301608

λ 1029346 1063156 1075876 1057800 1052444 952020 973779

(3) α 10881645 10089967 8862781 12417134 11229448 8585276 10638953

τ 624305 377596 530575 717365 369897 369897 677529

λ 1356729 1632560 1080897 1289444 1008257 1100313 940304

(4) α 10414672 9631697 10719627 18550046 12807114 9829533 12368930

τ 502122 1063493 497435 486724 1120735 489736 666483

λ 1877595 1747044 1433385 1424682 1514059 1436398 1868221

(5) α 27594597 16671108 30529665 28741443 27830258 25952324 15253451

τ 607902 1217143 497436 722051 1182999 511829 509821

λ 1714573 1762441 1696162 1754073 1720264 1696162 1855167

(6) α 44201767 32040381 45400834 42983620 36960169 34021419 36034591

τ 1570302 690585 697280 805737 693597 662800 675521

λ 2264227 2314104 2295023 2242804 2188574 2188909 2294020

(7) α 56691875 69713229 57465813 73842677 69173280 54650249 56554963

τ 880721 979138 713682 717365 858963 1236893 758873

λ 2516292 2547088 2671949 2504575 2518969 2619393 2514952

(8) α 120482077 122378758 136271459 126029182 128277682 132811506 138107550

τ 1200405 994870 925243 888085 874361 1491971 880722

λ 3746821 3380607 3604553 3515175 3492747 3540616 3522540

(9) α 356666702 257555926 248228180 270033314 240740208 269970381 253683229

τ 1149524 927920 935955 1210448 1209779 924238 1400250

λ 3635684 3873355 3705981 4016626 3598193 3736109 3608235

Fig. 12. Comparison of the average execution time of α, λ, and τ to mine each of the 9 process models in Fig. 11.

6.3. Objective 2: reducing log size

We have discussed in Section 4.2 that the size of event logs used by λ algorithm for process mining cannot be smaller than
those used by α algorithm. Thus we only compare the size of token logs used by τ with that of event logs used by α. When
calculating the size of the event logs, we will use the minimized event logs just sufficient for α to correctly mine the process
models [26].

To a hypothetical process model consisting of n selections with k choices in each selection, there are 2k + (n − 1)k2 tokens
in the token logs and nk2 events in the event logs. Fig. 13(a) plots the sizes of the token logs and event logs with the increasing
number of selections and choices. To another hypothetical process model composed of n parallel structures with k branches in
each parallelism, there are 2 + 2nk tokens in the token logs and nk2 + (n + 1)k events in the event logs. Fig. 13(b) plots the sizes
of the token logs and event logs with the increasing number of parallelisms and branches.

In general, as shown in Fig. 13, no matter how complex the process model is, the number of event entries in its event log is
always greater than the number of token entries in its token log. Besides, the more selections/choices and parallelisms/branches
the model contains, the faster the number of entries in its event log increases than the number of entries in its token log.
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Table 6

Paired t-tests of algorithm execution time: (α, τ ) and (λ, τ ) on each of

the 9 process models respectively.

Algorithm pairs Paired differences P-values

Mean Standard deviation

(1) α–τ 6.6E6 2998015.5 0.001

λ–τ 1.7E5 74706.684 0.001

(2) α–τ 9.3E6 2787044.9 0.000

λ–τ 6.7E5 80440.506 0.000

(3) α–τ 9.9E6 1265747.3 0.000

λ–τ 6.8E5 300027.17 0.001

(4) α–τ 1.1E7 3173412.7 0.000

λ–τ 9.2E5 321777.32 0.000

(5) α–τ 2.4E7 6180566.3 0.000

λ–τ 9.9E5 322917.49 0.000

(6) α–τ 3.8E7 5157298.7 0.000

λ–τ 1.4E6 330753.52 0.000

(7) α–τ 6.2E7 8025476.1 0.000

λ–τ 1.7E6 181717.56 0.000

(8) α–τ 1.3E8 6810022.3 0.000

λ–τ 2.5E6 223994.92 0.000

(9) α–τ 2.7E8 39268548 0.000

λ–τ 2.6E6 270914.31 0.000

Fig. 13. (a) Comparing the sizes (number of entries) of event logs and token logs with the increasing number of selections and choices in a process model; (b)

comparing the sizes of event logs and token logs with the increasing number of parallelisms and branches in a process model.

6.4. Objective 3: mining special process structures

Section 5.3 has already demonstrated that our token-log-based mining algorithm τ is able to discover more special process
structures than other existing mining algorithms (e.g., α, α+, α++, β and λ) through the experiments on a hypothetical process
model as well as a real world patient registration process for hospitals in China. This section proposes a new theorem and its
proof to formally validate the ability of algorithm τ in mining the three special process structures.

Theorem 1. The token log based algorithm τ is able to mine all four types of process structures including implicit dependency (Fig. 5),
non-SWF-net (parallel places with multi inputs (Fig. 14(a)) and implicit place (Fig. 6(c))), one-loop (Fig. 14(b)) and two-loop
(Fig. 14(c)), which cannot be fully discovered by any of the existing event log based mining algorithms including α, α+, α++, β and λ.

Proof.

(1) Mine implicit dependency:

" In Fig. 5, (implicit dependency ⇔ P1) ∧ (Mine Place ⇔ Make PPCP (pre–post contents of places))
# Mine implicit dependency between A and B ⇔ Make the PPCP of P1

" Ne between A and B (Ne is any task or tasks)
# Tokens produced by A or consumed by B are:

t = (A, EIDA, B, EIDB), t ′ = (A, EIDA, Ne, EIDNe) and t ′′ = (Ne, EIDNe, B, EIDB)



C. Li et al. / Information Sciences 328 (2016) 558–576 573

A1A1 P1P1

P2P2
CCB1B1

AnAn

BnBn

......

......

.....

......

......

......
PP

BB

AA CC P2P2

BB

AAP1P1

(b)(b) (c)(c)

Ne Ne'

(a)(a)

Fig. 14. (a) The general pattern of parallel places with multi inputs (contrast to Definition 6 (2), Fig. 6(b)); (b) pattern of one-loop; (c) pattern of two-loop.

" [ fpt(t) = fpt(t’) ∧ fpeid(t) = fpeid(t’)] ∧ [ fct(t) = fct(t’’) ∧ fceid(t) = fceid(t’’) ]
# The PPCP = ({A},{B},{EIDA},{EIDB}) made by t cannot merge t’ and t’’
# PPCP for P1 is remained in PSet (i.e., the set for all PPCPs of places) after function Merge
# P1 can be mine by the new algorithm ⇒ implicit dependency can be mined.

(2) Mine non-SWF-net (implicit places and parallel places with multi inputs):
(i) Mine implicit places

As shown in Fig. 6(c) as well as mentioned in Section 4.3, the pattern of implicit places is the same as implicit dependencies.
The proof of mining implicit places is the same as implicit dependencies above.

(ii) Mine parallel places with multi inputs

Fig. 14(a) illustrates the general pattern of parallel places with multi inputs (where an or-join follows an or-split directly and
other cases will be discussed in Section 7). Tasks A1…n are the inputs of P1 and B1…m are the inputs of P2.

" (Parallel places with multi inputs ⇔ P1 and P2 in Fig. 14(a)) ∧ (Mine Place ⇔ Make PPCP)
# Mine Parallel places with multi inputs ⇔ Construct PPCPs for P1 and P2

" P1 ∈ ●C ∧ P2 ∈ ●C
# Two tokens t and t’ belonging to P1 and P2, which are consumed by C at the same time satisfy:

t = (Ai, EIDAi,C, EIDC) ∧ t ′ =
(
Bj, EIDB j,C, EIDC

)

" In different running instances (cases), C consumes tokens produced by different pair of tasks.
# All pairs of tokens consumed by C in different cases are in the set S:

S =
{
(t1, t2)|t1 = (Ai, EIDAi, C, EIDC) ∧ t2 =

(
Bj, EIDB j, C, EIDC

)
, i ∈ [1, n], j ∈ [1, m]

}

" ∀(t1, t2) ∈ S ⇒ fct(t1) = fct(t2) ∧ fceid(t1) = fceid(t2)
# ∀(t1, t2) ∈ S ⇒ t1, t2 cannot be merged into the same PPCP
" ∀i ∈ [1,n], j ∈ [1,m] ⇒ ∃(t1 = (Ai, EIDAi, C, EIDC), t2 = (Bj, EIDBj, C, EIDC)) ∈ S
# All tokens produced by Ai and Bj cannot be merged into the same PPCP where i ∈ [1,n], j ∈ [1,m]
" ∀t1, t2 ∈ {(Ai, EIDAi, C, EIDC)| i ∈ [1,n]} ⇒ fpt(t1) = fpt(t2) ∧ fpeid(t1) ̸= fpeid(t2)
# All tokens produced by Ai where i ∈ [1,n] can be merged into a same PPCP. The same to tokens produced by Bj where j ∈

[1,m].
# Only PPCPs for P1 and P2 are remained ⇒ Parallel places with multi inputs can be mined.

(3) Mine one-loop:

" (One-loop ⇔ P in Fig. 14(b)) ∧ (Mine Place ⇔ Construct PPCP of place)
# Mine one-loop ⇔ Construct PPCP of P in Fig. 14(b)
" B or C may execute after A executing
# Tokens t1 = (A, EIDA1, B, EIDB), t2 = (A, EIDA2, C, EIDC1) and t3 = (B, EIDB, C, EIDC2) are recorded
" fpt(t1) = fpt(t2) ∧ fpeid(t1) ̸= fpeid(t2)
# t1 and t2 form PPCP = ({A},{B,C},{EIDA1,EIDA2},{EIDB,EIDC1})
" fct(t3) ∈ fpot(PPCP) ∧ fceid(t3) ̸∈fpoeid(PPCP)
#t3 can be merged into PPCP and PPCP = ({A,B},{B,C},{EIDA1,EIDA2, EIDB},{EIDB,EIDC1,EIDC2})
# P can be mined ⇒ one-loop can be mined.

(4) Mine two-loop:

" (Two-loop ⇔ P1 and P2 in Fig. 14(c) (Ne represents input tasks of P1 except B and Ne’ represents output tasks of P2 except B
)) ∧ (Mine Place ⇔ Construct PPCP of place)
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Fig. 15. When mining from the token logs of N4, τ may output both models N4 and N5 but all other algorithms would output N6.

# Mine two-loop ⇔ Construct PPCP of P1 and P2 in Fig. 14(c)
" A followed by B firstly and then B followed by A
# Tokens t1 = (Ne, EIDNe, A, EIDA1), t2 = (A, EIDA1, B, EIDB), t3 = (B, EIDB, A, EIDA2), and t2 = (A, EIDA2, Ne’, EIDNe’) are recorded
" [fct(t1) = fct(t3) ∧ fceid(t1) ̸= fceid(t3) ] ∧ [fpt(t2) = fct(t4) ∧ fpeid(t2) ̸= fpeid(t4) ]
# t1 and t3 form PPCP1 = ({Ne,B},{A},{EIDNe,EIDB},{EIDA1,EIDA2})
t2 and t4 form PPCP2 = ({A},{B,Ne’},{EIDA1,EIDA2},{EIDB,EIDNe’})
" PPCP1 stands for P1 and PPCP2 stands for P2

# P1 and P2 can be mined ⇒ two-loop can be mined. !

Based on the discussion of limitations of the existing process mining algorithms including α, α+, α++, β and λ, as well as the
above proof, we can conclude that the token log based τ algorithm is able to mine all four types of process structures including
implicit dependency, non-SWF-net (parallel places with multi inputs and implicit place), one-loop and two-loop, which cannot
be fully discovered by any of the existing event log based mining algorithms (α, α+, α++, β and λ).

7. Discussion of limitations

As mentioned in Section 4.3, there is a limitation of τ in handling the parallel places with multi inputs (i.e., the pattern forbidden
by SWF-net as shown in Fig. 6(b)). When mining the token log of process model N4 in Fig. 15, τ may also output the model N5 as
one of its mining results together with the correct one. However, it still outperforms other algorithms (i.e., α, α+, α++, β and λ)
which would simply output the incorrect model as N6 in Fig. 15.

The model N4 is considered as a non-Well-structured WF-net and Well-structured has been defined by Aalst et al. in [25] as
following.

Definition 15 (Well-handled/well-structured [25]). Petri net PN = (P,T,F) is well-handled iff ∀x,y ∈ P ∪ T and one of them is a
place, the other is a transition: ∀C1,C2 are two paths from x to y, if α(C1) ∪ α(C2) = {x, y} then C1 = C2. And the Workflow net
extended from PN is well-structured iff PN is well-handled.

The method α is for getting the names of all places and transitions in a path. The definition of well-structured says that the
and-split structure must be followed by an and-join and the or-split must be followed by an or-join in workflow nets. The new
mining algorithm τ cannot mine the parallel places with multi inputs whose or-joins do not follow an or-split.

In N4, P5 and P6, whose or-joins do not follow an or-split, become the parallel places with multi inputs. N4 has two kinds of
running instances (cases). In one case, tasks A, C, E and G are executed. In another case, tasks B, D, F and G are executed. The
tokens from P5 and P6 consumed by G in different cases are produced by (C, E) or (D, F). There are at least four tokens passing P5

and P6 in different cases and let tokens t1 = (C, EIDc, G, EIDg1), t2 = (E, EIDe, G, EIDg1), t3 = (D, EIDd, G,EIDg2), and t4 = (F, EIDf, G,
EIDg2) be the four tokens consumed by G. Among these four tokens, t1 and t2 cannot be merged into the same PPCP (pre–post
contents for place) because both their consumers and the consumers’ EIDs are the same and so do t3 and t4 (i.e., t1 can merge
with t3 or t4 and t2 can merge with t3 or t4). If t1 merges with t3 and t2 merges with t4, that is, two PPCPs, ({C,D},{G},{EIDc,
EIDd},{EIDg1, EIDg2}) and ({E,F},{G},{EIDe, EIDf},{EIDg1, EIDg2}) are created, then P5 and P6 in N4 can be mined. But if t1 merges
with t4 and t2 merges with t3, that is, two PPCPs, ({C,F},{G},{EIDc, EIDf},{EIDg1, EIDg2}) and ({E,D},{G},{EIDe, EIDd},{EIDg1, EIDg2})
are created, then P5 and P6 in N5 can be mined.

Our future work will address the mining of parallel places with multi inputs as mentioned in Section 9.

8. Related works

Process mining was initiated by Cook and Wolf [3] and it is sometimes also called Process discovery. One of the objectives of
process discovery is to meet the big challenges in modeling the running and complex business processes. To rigorously model
the structure and analyze the efficiency of complex, Aalst proposed the WF-net based on Petri nets to model business processes.
You can find more properties of WF-nets in [25,32] and more applications of different types of Petri-nets in [10,11,13,14]. Most
of the existing process discovery methods were based on event logs recorded during the process executions. These methods can
be categorized into two classes based on difference types of event logs: (1) the event logs only contain tasks, such as α [26]; (2)
the event logs contain the post tasks of the current executing task, such as λ [28]. In this study, we propose the τ algorithm that
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initially leverages the data describing the process resource changes which is carried by the token log, for the sake of enhancing
the effectiveness and efficiency of process mining.

Process mining has been extended to cover process discovery, conformance checking and process enhancement [22]. Con-
formance checking is usually performed in terms of the structures and behaviors of processes measured by fitness and appro-
priateness respectively [18]. As evolved from conformance checking, process mining was also applied on studying the similarity
between the structures and behaviors of two process models [5,33]. Besides places and tasks, Passage [20] and Region [1,27]
which refer to higher level structures composed by places and tasks in Petri nets are also used in process mining to decom-
pose process models. Besides the event logs which mainly record the execution of tasks in the system, the logs recording timing
information [6,34] of the system are also used in process mining. Process mining is also used in other research fields, such as
improving software process [12] and supporting personal adaptive learning [16]. The token log and the associated process mining
algorithm proposed in this paper aims to record and utilize the data (resources) produced and consumed by the system.

Process mining is a sub field of workflow management. It plays a very important role in synergizing data mining with business
process management and brings about a big enhancement on the techniques of Business Intelligence (BI) [22]. Data Mining
Technical Committee in the IEEE Computational Intelligence Society has established the IEEE Process Mining Task Force to bring
researchers of workflow management together as the emergent needs of leveraging data logs in mining the process models
and/or workflows. The workflow reference model [9] defined the features, terms, modules and structures needed in workflow
management. A number of data-driven approaches have been used in workflow mining. In [8], Herbst employed a machine
learning approach in process mining and discovering workflow models under the context of workflow management. In addition
to workflow mining, other aspects of workflow management addressed the organizing, modeling, managing and analyzing the
process workflows [23]. Aalst mentioned that there were ten huge problems in the research of workflow management [21,24].

9. Conclusions and future work

In this study, we have proposed a novel perspective to employ the data carried by token log which tracks the changes of
process resources for process mining. A new process mining algorithm τ is invented based on the token log to improve the
mining efficiency as well as enhancing the mining capability as compared to the traditional process mining methods based on
event logs. We have developed three plug-ins on top of the existing workflow engine, process modeling and mining platforms
(YAWL, PIPE and ProM) to prove the feasibility of token log and to realize the token log generation and algorithm τ .

We have evaluated the improvements of the mining efficiency of the token-log-based mining algorithm τ in terms of the
reduced log size and execution time using the two plug-ins on PIPE and ProM. The results of pairwise t-tests show that there is
no big difference between the efforts that are taken by the same workflow system to generate the token log and the event log.
Nevertheless, the executing efficiencies of event-log-based algorithms α and λ are significantly lower than that of algorithm τ .
Besides, no matter how complex a system process model is, the size of its event log used by the existing mining algorithms (α
[26], α+ [4], α++ [29], β [30] and λ [28]) is always larger than the size of its token log. The more selections/choices and paral-
lelisms/branches the model contains, the faster its event log size increases than its token log size. Finally, we have demonstrated
the ability of algorithm τ in mining the four special structures in Fig. 7 (implicit dependency, non-SWF-net, one-loop and two-
loop), which cannot be fully discovered by any of the existing event-log-based mining algorithms including α, α+, α++, β and λ
and a formal proof is provided to generalize the conclusion as well.

Our future work will extend τ algorithm to mine the structure of parallel places with multi inputs described in Section 7. We
will also test the token-log-based process mining algorithm on various types of real world system processes to make full use of
the resource usage data generated in process workflow management.
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