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a b s t r a c t 
Business Process Management (BPM) is a quickly developing management theory in recent years. The 
goal of BPM is to improve corporate performance by managing and optimizing the businesses process 
in and among enterprises. The goal is easier to achieve with the closed-loop feedback mechanism from 
business process execution to redesign in BPM life cycle, where the business process itself and the set of 
activities in BPM are viewed as a controlled object and a controller respectively. In this feedback control 
system, process mining plays an important role in generating feedback of process execution for redesign. 
However, the existing discovery methods cannot mine certain special structures from execution logs (e.g., 
implicit dependency, implicit place and short loops) correctly and their mining efficiencies cannot meet 
the requirements of online process mining. In this paper, we propose a novel discovery method to over- 
come these challenges based on a kind of augmented event log that will also bring new research direc- 
tions for process discovery. A case study is presented for introducing how the mined model can be used 
in business process evolution. Results of experiments are described to show the improvements of the 
proposed algorithm compared with others. 

© 2016 Elsevier Inc. All rights reserved. 
1. Introduction 

Cybernetics, which is also interpreted as control theory ( He 
et al., 2007; Peng et al., 2012 ), creates the general governing prin- 
ciple that controlling the controlled object with a controller and 
updating the controller according to the feedbacks ( Fescioglu and 
Kokar, 2011 ) generated from the pre controlling activities. Although 
certain feedback mechanisms and control activities can always be 
found in both software system itself and its engineering process, 
the feedback information is not normally formal and therefore 
control cannot be achieved precisely ( Yang and Zhang, 2014 ). So, 
software cybernetics was introduced to address this problem ( Cai, 
2002 ). Software cybernetics is motivated to control the software 
behavior that includes the behavior of software development 
processes, software maintenance processes, software evolution 
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processes as well as that of software execution itself ( Cai et al., 
2004 ). The purpose of control is to make the related software 
processes more efficient and effective so as to improve the quality 
of software systems ( Ravindran and Rabby, 2013; Ravindran, 2014 ). 

The term ‘software’ in software cybernetics means software 
development, maintenance, evolution processes and all related 
artifacts delivered during such processes, including the delivered 
software system ( Cai et al., 2004 ). For example, towards software 
testing ( Yang et al., 2014 ) in software cybernetics, the software 
under test serves as controlled object, while the software testing 
strategy serves as the corresponding controller ( Cai et al., 2002 ). 
The software under test and the corresponding testing strategy 
make up a closed-loop feedback control system. In this way, the 
feedback mechanism in software testing is formalized ( Cai et al., 
2002 ). Generally, it is the software process itself that controls the 
software products and improves their quality in software cyber- 
netics. But it can also be said that software cybernetics controls 
the software processes, because the feedback loop control system 
supply information for upgrading the process itself. The feedback 
loops in software cybernetics will help to improve the efficiency 
of software process in producing high quality products. It provides 
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Fig. 1. Interpret BPM life cycle with cybernetics and connect it to the techniques of process discovery. 
a clear framework for upgrading the controller’s working strategy, 
such as changing testing strategy in software testing process for 
finding more potential bugs according to pre testing feedbacks. 
Feedbacks generated by the controller are keys to accelerate 
the processes and the more precise the feedbacks are, the more 
efficient the processes are. 

Business process management (BPM) is commonly discussed 
in optimizing a company’s business process. The key concepts in 
BPM are design, modeling, execution, monitoring, optimization 
and reengineering ( Harmon, 2015; Rosemann and Brocke, 2015 ) 
and the process composed by these activities is similar to certain 
sub processes in software process, such as testing process. Fig. 1 (a) 
shows the process of BPM (i.e., life cycle) ( van der Aalst et al., 
2003, 2012b ). There are three intuitive feedback loops in the pro- 
cess of BPM shown in Fig. 1 (b). The first one is getting feedback 
from design stage for redesign where analysis stage is treated as a 
method for generating feedback. The next is during the execution 
stage and there are two different kinds of understanding of feed- 
back mechanisms here. The information derived from executing 
actions can be viewed as feedback for adjustment and the decision 
made by adjustment can also be viewed as feedback for making 
better executing rules. The last one is generating feedback for 
the evolution process of the controlled business process system 
through diagnosis activities. Regarding to these feedback mecha- 
nisms as well as the similarity between the process of BPM and 
software processes, software cybernetics theories can be applied 
to the BPM for improving the business process under management 
and the management activities themselves. In this paper, we 
mainly discuss the third feedback mechanism in BPM from the 
viewpoint of software cybernetics where the business process 
under management and the set of BPM activities are viewed as 
controlled object and controller respectively. 

The outputs of the execution step usually are system logs and 
they cannot be used as feedback for the controller directly. In order 
to make precise and useful feedback for the control system (i.e., 
the process of BPM), the techniques of process discovery ( van der 
Aalst et al., 2004 ) are needed for help. Process discovery is to dis- 
cover software internal execution process and it serves as a model- 
ing tool to derive an equal execution model of real software behav- 
ior from the system logs. Then, with the derived execution process 
model, the compliance between the designed software and the 
implemented one can be measured easily by comparing them. Pro- 
cess discovery can also benefit software engineering processes by 
mining software execution process because in the field of software 
engineering, software execution process modeling provides an in- 
tuitive structure of developed software system during software de- 
velopment, especially on verification and validation of requirement 
specifications in the early and late life cycle of software system de- 
velopment (e.g., software testing processes, requirements engineer- 
ing processes). In this paper, the discussed business processes are 
modeled with Petri nets because Petri nets are particularly capable 
of modeling all structures (i.e., sequences, choices, parallelisms 

and loops) in software execution processes by providing both the 
graphical notation and well-established mathematical theory. 

In this paper, we focus on discovering an execution process 
model from the event log representing the control flow of the 
business process. Till now, there are mainly three kinds of discov- 
ery algorithms and they are region-based ones ( Carmona et al., 
2010; Carmona, 2012 ), genetic ones ( van der Aalst et al., 2005; 
Vázquez-Barreiros et al., 2014; van Eck et al., 2015 ) and traditional 
ones (i.e., α( van der Aalst et al., 2004 ), α+ ( de Mederios et al, 
2004 ), λ( Wang et al., 2012 ), α++ ( Wen et al., 2007 ), α# ( Wen et al., 
2010 ) and β( Wen et al., 2009 ). The region-based and genetic ones 
aim at breaking restrictions of traditional ones, such as that the 
event log should be complete and without noise. But the mining 
efficiency of these algorithms is evidently lower than the tradi- 
tional ones. Our approach is inherited from traditional algorithms, 
so no comparison between our approach and the region-based or 
genetic ones will be made in this paper. Although there have been 
many traditional discovery algorithms, there are still many kinds of 
structures that cannot be discovered, such as implicit places, implicit 
dependencies, non - SWF - nets and short loops (i.e., one-loop and two- 
loop ) defined in ( Wen et al., 2007 ) and ( van der Aalst et al., 2004 ). 
To tackle these problems, a novel discovery method whose core is 
a mining algorithm called λ+ based on a type of augmented event 
logs is proposed in this paper. The essential difference between λ+ 
and λ is that λ+ augments the event logs by inserting the pre tasks 
into events. We follow the conventional definitions of the terms 
widely accepted in the former algorithms including event log, event 
and task . The major contributions we made in this paper are: 

(1) We propose to use the reasonable augmented event logs 
with both pre and post tasks in process discovery. The 
method for generating the new event logs is also presented. 

(2) A new mining algorithm called λ+ is proposed which is 
proved to have improved both the efficiency and ability of 
traditional mining algorithms. 

(3) Plug-ins for generating the augmented event logs and for 
implementing the mining algorithm are developed on top of 
the existing open source workflow engine and process min- 
ing tools. 

The remainder of this paper is organized as follows. 
Section 2 introduces the modeling tools used in this paper, 
the Petri nets ( Reisig, 1985 ) and Workflow nets ( van der Aalst 
et al., 1998 ). Section 3 details the challenges in process discovery. 
In Section 4 , we illustrate our new discovery method by defining 
the augmented event log, analyzing the strategies for making the 
augmented logs and detailing the λ+ mining algorithm, along with 
a case study. Section 5 evaluates the new discovery method by 
proving the algorithm’s mining ability formally and comparing its 
mining efficiency with other algorithms. The limitation of the new 
method is also described in Section 5 . Section 6 describes the 
related works and in Section 7 a further comparison between the 
Petri Nets and software cybernetics in what they can do and they 
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Fig. 2. The process model of the Patient Registration System used by many hospitals in China. 
cannot do is made. Section 8 concludes and envisages our future 
work. 
2. Modeling language: Petri nets and workflow nets 

Petri nets are widely used in modeling and analyzing control 
systems because they offer both a graphical notation and a well- 
developed mathematical theory. There are Petri nets for continuous 
and hybrid discrete-continuous processes that are useful in dis- 
crete, continuous and hybrid control theory ( David and Alla, 2005 ). 
Controllers in cybernetics related researches are often modeled 
with Petri nets. For example, in software cybernetics, the choice 
and iteration notations of Petri nets are very flexible in represent- 
ing feedback-loop mechanism in software requirements or testing 
engineering. In the context of BPM, Petri nets are used for mod- 
eling the feedback loops in the controller and the choice, iteration 
and concurrency executions of process models. In this paper, Work- 
flow nets (WF-nets), a subclass of Petri nets, are used for modeling 
the control-flow of business processes supporting software sys- 
tems. Fig. 2 shows the designed software execution process model 
of a Patient Registration System and it is represented in WF-nets. 
The control units in this process, such as Late Handling, Device 
Check and the selection after Doctor Check, are well presented by 
Petri nets. In the following parts of the paper, an execution process 
model representing the running behavior of the implemented sup- 
porting software system will be discovered through our method for 
generating precise feedback in BPM from the software cybernetics 
point of view. This discovering process is used as a case study to 
show the overall discovery method proposed in this paper. 

Petri net PN can be denoted by a 3-tuple, PN = ( P,T,F ). P is 
the set of places in the net. T is the set of transitions and P ∩ T 
= Ø. F = ( P ×T ) ∪ ( T ×P ) is the set of flow relations between places 
and transitions. As shown in Fig. 2 , a place is represented with 
a circle and a transition is represented by a rectangle. The set of 
the pre elements of element x ∈ P ∪ T is denoted by ●x = { y ∈ P ∪ T |( y, 
x ) ∈ F } and the set of the post elements of x is denoted by x ●
= { y ∈ P ∪ T |( x , y ) ∈ F }. The snapshot of the distribution of tokens 
(represented by black dots) in the places is called a marking at 
one point of time and the marking is denoted by M . If the initial 
marking of the net PN is M 0 then all the possible markings of the 
net could be denoted by M = [ PN,M 0 > . Let M be the marking of 
PN at one point, p be a place in PN and t be a transition, then 
definitions of other terms in Petri nets could be described as 
follows. The token number in PN under marking M is denoted by 
M ( p ). Transition t is enabled under marking M iff ∀ p ∈ ●t: M ( p ) ≥1. 
If a transition is enabled it could change its state and this process 
is called fire. After t fires the marking of PN turns to M’ and this 
transform is marked as M t −→ M’ . All the enabled transitions under 
marking M is denoted by enabled ( M ). 

In this paper, each transition or task in the Petri nets represents 
a function unit in the supporting software of the business process. 
The places serve as caches or storages of transit parameters or 
resources. A WF-net requires the Petri net to have (i) a single Start 
place, (ii) a single End place, and (iii) each node must be on one 
path from Start to End . The soundness property further enforces 
that (iv) there is no dead task, and (v) the process with only 
one token in the Start place can always terminate with only one 
token in the End place. If a WF-net is sound then there will be 
no dead-lock or live-lock in the model ( Rozinat and van der Aalst, 
2008 ). The initial and final states of a WF-net with input place i 
and output place o are denoted by [ i ] and [ o ]. 

The process in Fig. 2 only contains a part of special structures 
discussed in this paper, such as implicit dependency, implicit place 
and one-loop . All the special structures considered in this paper 
are defined in Section 3 and the ability of our method to mine 
them correctly is proved in Sections 4.4 and 5.1 . 
3. Process discovery challenges 

The software discussed in this paper are the ones supporting 
the business processes which are collections of related, structured 
activities or tasks that produce a specific service or product. 
The activities may form simple choice, iteration or concurrent 
structures. But they may also form complex ones, such as implicit 
dependencies, implicit places and non-SWF-nets . It is difficult for the 
existing algorithms to discover these structures and our method 
is proposed to handle this problem. Following are definitions of 
these structures. 
Definition 1. (Implicit Dependency ( Wen et al., 2007 )). Let PN 
= ( P,T,F ) be a sound WF-net with input place i and output place 
o . ∀ a,b ∈ T, there is an implicit dependency between a and b 
iff: (1) a ●∪ ●b ̸ = Ø, (2) !M ∈ [ PN ,[ i ] > ⇒ a ∈ enabled ( M ) ∧ b ∈ enabled ( M - 
●a + a ●), (3) ∃ M ∈ [ PN ,[ i ] > ⇒ a ∈ enabled ( M ), and ∃ M ’ ∈ [ PN,M - 
●a + a ●> ⇒ b ∈ enabled ( M ’). 
Definition 2. (Implicit Place ( van der Aalst et al., 2004 )). Let PN 
= ( P,T,F ) be a sound WF-net with an initial state [ i ], ∀ p ∈ P is an 
implicit place iff: ∀ M ∈ [ PN , [ i ] > , ∀ t ∈ p ●⇒ if M ≥●t \ { p } then M ≥●t . 
Definition 3. (SWF-net ( van der Aalst et al., 2004 )). A WF-net 
PN = ( P,T,F ) with initial state [ i ] is a SWF-net (Structured Work- 
flow Net) iff: (1) ∀ p ∈ P ∧∀ t ∈ T ⇒ if ( p,t ) ∈ F ∧ | p ●| > 1 then | ●t | = 1, (2) 
∀ p ∈ P ∧∀ t ∈ T ⇒ if ( p,t ) ∈ F ∧ | ●t | > 1 then | ●p | = 1, (3) there are no im- 
plicit places. 

To summarize, Fig. 3 shows all the sub-structures that influence 
the mining scope of existing algorithms including the structures 
of implicit dependency, implicit place and non-SWF-net. 

The place p in Fig. 3 (e) is an implicit place which would not 
affect the behavior of the net whether it exists or not. Fig. 3 (f) is 
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Fig. 3. These are the sub-structures that influence the mining scope of existing algorithms. 
Table 1 
The conclusion of the mining capability of algorithms α++ , β and λ. 

Algorithm names (a), (b) (e) (c), (d) (f) (g), (h) 
α++ Rule out Cannot Can Can Cannot 
β Rule out Cannot Can Cannot Not mentioned 
λ Partly Partly Can Can Cannot 

a combined sub-structure of implicit dependency in which place 
p must be not an implicit place. Implicit places also imply one 
kind of implicit dependency, so if the algorithm can mine the 
implicit places correctly then it can mine that kind of implicit 
dependency correctly. The structure of Fig. 3 (f) represents all the 
patterns of implicit dependency defined in paper ( de Mederios 
et al, 2004 ). Fig. 3 (a), (b) and (e) are typical sub-structures of 
non-SWF-nets. There are two one-loops in Fig. 3 (c) and a two-loop 
in Fig. 3 (d). Fig. 3 (g) and (h) stand for a special kind of one 
length loop together with an implicit dependency. None of the 
existing algorithms can mine all of these sub-structures correctly. 
In the remainder parts of this paper, the mining ability of the new 
algorithm is discussed based on all sub-structures shown in Fig. 3. 

Because algorithms β and α+ are both inherited from algo- 
rithm α and algorithm α++ is inherited from α+ , only the mining 
capability of α++ , β and λ are concluded in Table 1 according to 
structures in Fig. 3. 

But with the augmented event logs where pre tasks are added, 
the scope of structures which can be discovered correctly by 
new mining algorithm λ+ is expended (i.e., the mining ability is 
improved through our new discovery method). Compared with 
other algorithms, the new λ+ algorithm is much more outstanding 
due to its ability of mining all the structures in Fig. 3 . Here is the 
definition of the mining scope of λ+ : 
Definition 4. (Mining Scope of λ+ ). Let PN = ( P,T,F ) be a sound 
WF-net, then λ+ can mine PN from its event logs with pre and 
post tasks correctly even though it contains all the sub-structures 
which are shown in Fig. 3. 

The mining ability of λ+ algorithm defined here is proved by 
the case study after describing the details of the mining algorithm 
in Section 4.3 and the formal proofs in Section 5.1 . 
4. Process discovery approach 

This section describes our new discovery method for deriving 
software execution process models which represents the real 
behavior of the running systems. Besides discovering the execution 
process of software system, the proposed method can be applied 
to discover software development, testing, maintenance or evo- 
lution processes. Taking software testing process as an example, 

Table 2 
A part of the augmented event log used in λ+ with both pre and post tasks. 

Pre-tasks Current-task Post-tasks Pre-tasks Current-task Post-tasks 
R LU LH LU DoC 

R LU DoC LU DoC DeC 
LU DoC Pr DoC DeC DeC 
DoC Pr MP, P DeC DeC DoC 
Pr MP OT DeC DoC DoC 
Pr P OT DoC DoC BHN 
MP, P OT LC DoC BHN P, PT 
OT LC LO, LO BHN P PT 
LC, LC LO BHN, P PT LC 

R LU PT LC LO, LO 
R LU LH LC, LC LO 
LU LH LU 

the testing process which contains test planning, test cases design, 
activities of managing bugs and so on, can be derived with our 
discovery method. With the help of the intuitive testing process 
model, it is easy to improve the testing process itself. In the con- 
text of software cybernetics in BPM, the discovery method serves 
as a monitor of the running software system. It will help to gener- 
ate information for mining potential requirements and bugs. This 
section is organized as follows. First, the basis of the new method, 
i.e., the augmented input log, is defined. Second, the strategy 
for augmenting the event logs is analyzed. Then the core of the 
discovery method, i.e., the mining algorithm, is proposed along 
with the definitions of the relations between tasks and helper 
data structures. At last, a case study based on the business process 
mentioned in Section 2 (i.e., Fig. 2 ) is described to show how our 
discovery method helps to generate intuitive software execution 
process models as feedback in software evolution process. 
4.1. The augmented event logs: adding pre tasks and post tasks 

Table 2 shows a part of the augmented event logs of the 
implemented Patient Registration System . The log will be used 
as the input of the discovery method for deriving software real 
execution process. The result process will be used as the feedback 
of the software evolution process from the software cybernetics 
point of view. Each line in the table represents an event entry. 
Each event entry consists of pre-tasks, current-task and post-tasks . 
Task is the term in business process and here it can be interpreted 
with function in software systems. 

Task List is defined to contain the pre and post tasks in an event 
entry. The same task in the pre tasks list means that the current 
executed task needs two or more trigger signals or parameters 
(represented by token in WF-nets) transferred from the pre task in 
order to execute. The same task in the post tasks list means that 
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the current executed task will produce two or more tokens for the 
same post task. A task belonging to a Task List is denoted by ’ ∈ ’. 
The Task List shall be defined prior to the events because it is a 
key element in the event. Below are the definitions of Task List, 
Event and Event Set: 
Definition 5. (Task List). Let PN = ( P,T,F ) be a sound WF-net. TL 
= [ t 1 , t 2 ,…, t n ] is a Task List based on T iff: ∀ t i ∈ TL ⇒ t i ∈ T. NUM ( t,TL ) 
denotes the occurrence of t in TL . Let TL 1 , TL 2 be two Task Lists 
based on T , then TL 1 ̸ = TL 2 iff: if ( i = 1, j = 2) ∨ ( i = 2, j = 1) then 
∃ t ∈ TL i ⇒ ( t ̸∈ TL j ) ∨ ( t ∈ TL j ∧ NUM ( t,TL i ) ̸ = NUM ( t,TL j ). 
Definition 6. (Event). Let PN = ( P,T,F ) be a sound WF-net and t 0 ∈ T , 
then entry e = [ TL 1 ] t 0 [ TL 2 ] is an event based on PN iff: TL 1 and TL 2 
are Task Lists based on T. TL 1 is called the pre Task List and TL 2 
is called the post Task List. ∀ e i = [ TL 11 ] t i [ TL 12 ], e j = [ TL 21 ] t j [ TL 22 ] 
⇒ e i ̸ = e j iff: TL 11 ̸ = TL 21 ∨ t i ̸ = t j ∨ TL 12 ̸ = TL 22 . ∀ e = [ TL 1 ] t e [ TL 2 ] ⇒ pre ( e ) = 
{ t | t ∈ TL 1 }, task ( e ) = t e , post ( e ) = { t | t ∈ TL 2 }. 
Definition 7. (Event Set). Let PN = ( P,T,F ) be a sound WF-net, 
then ES = { e 1 , e 2 ,…, e n } is called the event set based on PN iff: (1) 
∀ e i ,e j ∈ ES ⇒ e i ̸ = e j (2) ∀ e = [ TL 1 ] t [ TL 2 ] ∈ ES ⇒ t ∈ T ∧ TL 1 , TL 2 ∈ T ∗. 

For example, the event entry e = [ OT ] LC [ LO,LO ] in Table 2 has 
two LO s in post task list. That means if task LC is executed, there 
would be two different tokens produced and placed in the post 
places of LC . The event set of the log shown in Table 1 can be for- 
mally represented as ES = {[] R [ LU ],[ R ] LU [ DoC ],[ LU ] DoC [ Pr ],[ DoC ] Pr 
[ MP,P ],[ Pr ] MP [ OT ],[ Pr ] P [ OT ],[ MP,P ] OT [ LC ],[ OT ] LC [ LO,LO ],[ LC,LC ] LO []}. 
But if the pre or post tasks of an event are the same as the 
executed task, the pre or post tasks should show up only once. For 
example, the events e 1 = [ t 0 , t 2 ] t 1 [ t 1 , t 1 ] and e 2 = [ t 1 , t 1 ] t 1 [ t 1 , t 1 ] in 
the event log of Fig. 3 (g) should be simplified as e 1 = [ t 0 , t 2 ] t 1 [ t 1 ] 
and e 2 = [ t 1 ] t 1 [ t 1 ]. 
4.2. Strategies for making the augmented event logs 

The ultimate goal of BPM is to improve the quality of the 
managed business process referring to that of software cyber- 
netics. Interpreted with theories of software cybernetics, the 
quality of the supporting software system represents the quality 
of the business process itself. Practicing the feedback mechanism 
in the software evolution process is an effective way to upgrade 
the controlled software products. So, a fundamental question is 
raised: how to construct precise feedbacks from running software 
systems for efficient and effective software evolution? It is a 
common sense that system logs tell what the running software 
systems do exactly. Then the question is how to derive execution 
process model from the system logs. The first challenge is to find 
useful system logs. As analyzed in Section 3 , the logs with the 
pre and post tasks will be more useful than traditional event logs 
and there are two ways to generate this kind of augmented event 
logs. The first is to construct the information of pre and post tasks 
from basic events defined in ( van der Aalst et al., 2004 ). There 
are often other data fields in the event besides case id and task 
name , such as variables, operators, inputs and outputs . The relations 
between tasks can be derived from the relations between data 
fields belonging to different events in the same running cases. For 
instance, if in a same running instance, there is a same valued 
variable used in two different events ( e 1 , e 2 ) and the variable is a 
output of another event ( e 3 ), then the tasks of e 1 and e 2 may both 
be the post tasks of the task of e 3 . There has already been research 
using data fields in basic event logs to get the relationship be- 
tween tasks, such as ( Borrego and Barba, 2014 ) and ( de Leoni and 
van der Aalst, 2013 ). This method is more appropriate for mining 
execution process models than old software systems that already 
lives for decades. For generating feedbacks for evolution process of 

other newer software systems supporting business processes, we 
recommend using the second strategy. 

The second is to track and record the routing (i.e., the produc- 
ers and consumers) of all kinds of resource used in the software 
system, such as control signals, parameters and even real-world 
materials. Then the pre and post function units of the current 
ones can be derived according to the producers and consumers 
of resources. For example, if two kinds of different resources are 
produced by the same task at the same time, then the different 
consumers of these resources must all be the post tasks of the 
producer. According to this logging method, there is no doubt 
that the producer and consumer of the resources passing the 
traditional defined implicit places are recorded in the log. Then, 
by constructing places between the resource’s producer and con- 
sumer, the implicit place is mined. In other words, the traditional 
implicit places related information will always be exhibited in the 
augmented event logs if the software system runs normally. So it 
is the augmented event logs that make sure our new discovery 
method can mine all implicit places. The software for the previ- 
ously mentioned Patient Registration System has been embedded 
the function of making the augmented event log according to 
this strategy. We have also developed a plug-in in PIPE ( Platform 
Independent Petri Net Editor , a Java based, open source, graphical 
tool for drawing and analyzing Petri nets 1 ) for the method that 
tracks resources used in the software systems supporting the 
business processes for making the augmented event logs. 

The interesting question that people might ask is whether it 
deserves to make this kind of system log in process supporting 
software systems. First, we argue that the function for making 
the log by tracking the resources used in the system is easy to 
implement as analyzed above. Second, the efficiency of diagnosis 
in the governor system will be improved significantly by discov- 
ering models using this kind of system logs comparing to other 
discovery methods and this contributes a lot to improving the 
efficiency of the total evolution process. The comparisons will be 
illustrated in Section 5.2 . 
4.3. Mining algorithm 

With the augmented event logs and its generating methods, 
here comes the most important part of our new discovery method, 
i.e., the mining algorithm. In software cybernetics, the key point of 
improving the software quality in evolution process is constructing 
precise feedbacks. So, the goal of mining algorithms is to discover 
all relationships between function units correctly and construct 
a proper software execution process model by these relations. 
The derived model will be used in detecting software errors and 
reengineering of business process supporting software systems. 
However, generating intuitive and interactive feedback for monitor- 
ing and controlling the executing business processes is not the only 
way in which controlled methods in software cybernetics support 
process discovery. Here, we stress that the controlled methods op- 
timize the discovery method itself with the help of feedback evalu- 
ation. Taking our mining algorithm as an example, it cannot handle 
all special structures in Fig. 3 at first. But by analyzing the experi- 
ments feedbacks, we find the way to enhance its mining ability. 

Before illustrating the details of the algorithms, the relations 
between tasks (i.e., function units in business process supporting 
software system) shall be defined. There are mainly casual de- 
pendency and parallel relationship between tasks. Here are the 
definitions of relations in the augmented event logs. 
Definition 8. (Causal Dependency). Let ES be the event set 
of a sound WF-net PN = ( P,T,F ) and ‘ → w ’ be the label 

1 PIPE can be downloaded from http://sourceforge.net/projects/pipe2/ . 

http://sourceforge.net/projects/pipe2/
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for causal dependency between tasks. ∀ a,b ∈ T, a → w b iff ( ∃ e = 
[ θ1 ] a [ θ2 ] ∈ ES ⇒ b ∈ θ2 ) ∨ ( ∃ e = [ θ1 ] b [ θ2 ] ∈ ES ⇒ a ∈ θ1 ). 
Definition 9. (PrePost Parallelism). Let ES be the event set of a 
sound WF-net PN = ( P,T,F ) and ‘|| w ’ be the label for per - post 
parallelism between tasks. ∀ a,b ∈ T, a || w b iff ∃ e = [ θ1 ] t [ θ2 ] ∈ ES ⇒ 
( a ∈ θ1 ∧ b ∈ θ1 ) ∨ ( a ∈ θ2 ∧ b ∈ θ2 ). And a || w b ⇔ b || w a . 

For example, from the event e = [ MP,P ] OT [ LC ] in Table 2 , we can 
derive the causal dependencies MP → w OT, P → w OT and OT → w LC . As 
defined in parallelism , every two tasks in the pre task list or the 
post task list is in parallel with each other. As to the event log 
shown in Table 2 , the parallelisms derived are MP || w P, LO || w LO, 
LC || w LC, BHN || w P and P || w PT . If tasks a and b satisfy a || w b then 
there is no need to specify a ̸ = b (i.e., the relations LO || w LO and 
LC || w LC in Table 2 ). But for the events whose pre task, current task 
and post task are the same task, all the parallel relations related to 
that task are ignored. For example, since there is e = [ t 1 ] t 1 [ t 1 ] in 
the task set of Fig. 3 (g), the parallelism t 1 || w t 2 is ignored and it is 
the same in Fig. 3 (h). This property is essential to the proof of the 
new method’s mining ability in Section 5.1 . Here are other basic 
and important definitions that will be used. 
Definition 10. ( ∈ , first, last). Let ES = { e 1 , e 2 ,…, e n } be the event set 
of sound WF-net PN = ( P,T,F ) and TL 1 , TL 2 are task lists based on T , 
then (1) ∀ a ∈ T ,[ TL 1 ] a [ TL 2 ] ∈ ES iff ∃ e i = [ TL 1 ] a [ TL 2 ] ∈ ES , (2) first ( ES ) = 
{ task ( e )| e ∈ ES ∧ pre ( e ) = Ø}, (3) last ( ES ) = { task ( e )| e ∈ ES ∧ post ( e ) = Ø}. 

The first ( ES ) is the set of tasks without pre tasks and the 
last ( ES ) is the set of tasks without post tasks. 

Like other mining algorithms, λ+ also requires no noise in the 
event logs (i.e., the logs are correct) and the event logs must con- 
tain all the necessary information for mining the execution model 
correctly (i.e., the logs are complete) ( van der Aalst et al., 2004 ). 
For example, Table 2 is a correct and complete event log for min- 
ing the software execution process of the process model in Fig. 2. 
Definition 11. (Completeness of Event Set). Let PN = ( P,T,F ) 
be a sound WF-net, the event set ES = { e 1 , e 2 ,…, e n } is called 
the complete event set of PN iff (1) ∀ ES ’ ̸ = ES ⇒ ES’ ⊆ES , (2) ∀ t ∈ T , 
∃ e ∈ ES ⇒ task ( e ) = t . 

With the augmented event logs, the first thing to do before 
constructing the model is deriving causal dependencies between 
tasks. The causal dependencies will be stored in a list called 
Causal Dependency List . The list is enclosed in "[]". The causal 
dependencies derived from pre task lists are captured in the pre 
Causal Dependency List( PreCL ) and the ones derived from post 
task lists are captured in the post Causal Dependency List( PostCL ). 
We define the theorem as: 
Theorem 1. The PreCL and PostCL of the same process model will be 
the same. 
Proof. Let PN = ( P,T,F ) be a sound WF-net, ES = { e 1 , e 2 ,…, e n } 
be the complete event set of PN. PreCL and PostCL are the 
lists of causal dependencies captured from the relationships be- 
tween the current task and its pre and post tasks. Assume 
∀ a ∈ T ∧∀ b ∈ T ∧ a → w b ∈ PostCL ∧ a → w b ̸∈ PreCL. a → w b ∈ PostCL means 
that ∃ e ∈ ES ∧ task ( e ) = a ∧ b ∈ post ( e ) ∧ a ●∪ ●b ̸ = Ø, because the WF-net 
is sound, that is, there is no dead task in the net. And task b would 
be executed and recorded in the log, which means ∃ e ’ ∈ ES ∧ task ( e ) 
= b , because a ●∪ ●b ̸ = Ø, there must exist the relation that a ∈ pre ( e ’). 
Thus a → w b ∈ PreCL can be deduced from e ’ and it conflicts with our 
assumption. So a → w b ∈ PostCL ⇒ a → w b ∈ PreCL and vice versa. That is 
to say a → w b ∈ PostCL ⇔ a → w b ∈ PreCL . Therefore PreCL is the same as 
PostCL . !

The PostCL will be used in λ+ . The output of mining algorithms 
is the set of pairs of pre and post tasks of all places. In former 

Table 3 
Method merge. 

Method: Merge a causal dependency into a TSP 
Input: PPPara 

TSP : ( TS 1 , TS 2 ), TS 1 = [ a 1 , a 2 ,…, a n ], TS 2 = [ b 1 , b 2 ,…, b m ] 
c = ( a ’, b ’) 0 

Output: TSP : ( TS 1 , TS 2 ) 
Begin 

if a ’ ∈ T S 1 ∧ b ’ ̸∈ T S 2 
if ∀ i ∈ [1, m ] b i ∈ TS 2 ⇒ ( b i , b ’) ̸∈ PPPara 

T S 2 = T S 2 + b ’ 
If a ’ ̸ = b ’ 

c = (a’, b’) 1 
end if 

end if 
else if a ’ ̸∈ T S 1 ∧ b ’ ∈ T S 2 

if ∀ i ∈ [1, n ] a i ∈ TS 1 ⇒ ( a i , a ’) ̸∈ PPPara 
T S 1 = T S 1 + a ’ 
If a ’ ̸ = b ’ 

c = (a’, b’) 1 
end if 

end if 
else if a ’ ∈ T S 1 ∧ b ’ ∈ T S 2 

If a ’ ̸ = b ’ 
if ∀ i ∈ [1, n ] a i ∈ TS 1 ⇒ ( a i , a ’) ̸∈ PPPara ∧∀ i ∈ [1, m ] b i ∈ TS 2 ⇒ ( b i , b ’) ̸∈ PPPara 

c = (a’, b’) 1 
end if 

end if 
end if 

End 
algorithms, Y w is used to denote the set of pairs of pre and post 
tasks of all places. The entry in Y w is called the Max Pre - Post 
Task Set Pair ( MTSP ) in this paper. The tasks are added step by 
step into the pair of pre and post tasks of places in λ+ and Y w is 
constructed at the end of the algorithm. The intermediate state of 
MTSP is defined first as following. 
Definition 12. (Pre-Post Task Set Pair ( TSP )). Let PN = ( P,T,F ) be 
a sound WF-net and T S 1 , T S 2 ⊆T , then ( T S 1 , T S 2 ) is the TSP of place 
p ( p ∈ P ) iff ∀ a ∈ T S 1 ∧∀ b ∈ T S 2 ⇒ ( a,p ) ∈ F ∧ ( b,p ) ∈ F . 
Definition 13. (Max Pre-Post Task Set Pair ( MTSP )). Let PN = 
( P,T,F ) be a sound WF-net and T S 1 , T S 2 ⊆T . Then ( T S 1 , T S 2 ) is 
the MTSP of place p ( p ∈ P ) iff (1) ∀ a ∈ T S 1 ∧∀ b ∈ T S 2 ⇒ ( a,p ) ∈ F ∧ ( b,p ) ∈ F , 
(2) ∀ ( a,p ) ∈ F ∧∀ ( b,p ) ∈ F ⇒ a ∈ T S 1 ∧ b ∈ T S 2 . 

Based on the definition of MTSP, Y w = 
{ p ( TS 1, TS 2) | ∃ p ∈ P : ∀ a ∈ T S 1 ∧ b ∈ T S 2 ⇔ ( a,p ) ∈ F ∧ ( p,b ) ∈ F }. The key step 
in λ+ is to add appropriate tasks into the TSP s to generate the 
MTSP s of the places. Whether a task should be added or not is 
determined based on the parallelism relations between tasks. All 
the parallelism relations are captured in the Pre - Post Parallelism 
Set ( PPPara ). For instance, the PPPara derived from Table 1 is 
{ MP || w P,LC || w LC,LO || w LO }. The process of adding tasks into TSP 
is accomplished by method Merge . The inputs of Merge are TSP 
= ( T S 1 , T S 2 ), causal dependency between task a ’ and b ’ and the 
PPPara of the entire process. Each causal dependency might be 
encountered by the method Merge for more than once. But once it 
is added into the TSP there is no need to insert it again. This is en- 
abled by the state of causal dependency . If the causal dependency 
between a pair of tasks is inserted into the TSP , its state is turned 
into 1 and 0 otherwise. Table 3 is method Merge. Merge determines 
the state of a task pair based on the following Theorem. 
Theorem 2. If different tasks both have the same causal dependency 
with the same task then they must be connected with the same task 
by a single place if they are not in parallel with each other. 
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Table 4 
Method core . 

Method: Build up Y w according to PostCL and PPPara 
Input: PostCL = [( a 1 , b 1 ) 0 ,( a 2 , b 2 ) 0 ,…,( a i , b i ) 0 ] 

PPPara = {( a 1 ’, b 1 ’) 0 ,( a 2 ’, b 2 ’) 0 ,…,( a j ’, b j ’) 0 } 
Y w = Ø

Output: Y w = {( TS 11 , TS 12 ), ( TS 21 , TS 22 ), …, ( TS k 1 , TS k 2 )} 
Begin 

for each c = ( a, b ) tag_c ∈ PostCL do 
if a ̸ = b ∧ tag_c is 0 

T SP : ( T S 1 , T S 2 ), T S 1 = [ a ], T S 2 = [ b ]; 
tag_c = 1; 
for each c’ = ( a ’, b ’) tag_c ’ ∈ PostCL from the next of c = ( a, b ) tag_c in PostCL do 

if tag_c ’ is 0 
Merge ( PPPara , ( T S 1 , T S 2 ), c ’) 

end if 
end for 

Put ( TS 1 , TS 2 ) into Y w 
end if 

end for 
End 

Proof. If a,b,c are any three tasks in the same WF-net PN with 
a → w b,a → w c , and a ●∪ ●b ̸ = Ø ∧ a ●∪ ●c ̸ = Ø, then there can be only two 
legal situations: (1) There is a place connecting a and b and an- 
other place connecting a and c ; (2) There is only one place con- 
necting a,b and c . If there are two places then ●b ∪ ●c = Ø that is 
to say b || w c . And if there is only one place then ●b ∪ ●c ̸ = Ø that is 
to say b || w c is not in the PPPara of PN . If b || w c is not in the PPPara 
of PN , there is only one place between a,b and c . 
Definition 14. (Mining Algorithm λ+ ). Let W be the sound WF-net 
representing the execution process model to be mined, ES be the 
event set of W, i w be the input place and o w be the output place 
of W, T w be the task set and λ+ ( W ) be the result process model 
generated by λ+ . Then λ+ is defined as following. 
1. T w = {t| ∃ e ∈ ES ⇒ t = task(e)} 
2. T i = {t|t ∈ first(ES)} 
3. T o = {t|t ∈ last(ES)} 
4. PostCL = [(a,b)|[TL 1 ]t[TL 2 ] ∈ ES,a = t ∧ b ∈ TL 2 ], 

PPPara = {(a i ,a j ),(b k ,b l )|[a 1 ,a 2 ,…,a n ]t[b 1 ,b 2 ,…,b m ] ∈ ES ∧ i,j ∈ [1,n] ∧ k, 
l ∈ [1,m] ∧ i ̸ = j,k ̸ = l} 

5. Let Y w = Ø,Y w = Core(PostCL,PPPara,Y w ). (Method Core is de- 
fined in Table 4. ) 

6. P w = {p (TS1,TS2) |(TS 1 ,TS 2 ) ∈ Y w } ∪ {i w ,o w } 
7. F w = {(a,p (TS1,TS2) )|(TS 1 ,TS 2 ) ∈ Y w ∧ a ∈ TS 1 } ∪ {(p (TS1,TS2) ,b)|(TS 1 ,TS 2 ) ∈ 

Y w ∧ b ∈ TS 2 } ∪ {(i w ,t)|t ∈ T i } ∪ {(t,o w )|t ∈ T o } 
8. λ+ (W) = (P w ,T w ,F w ) 

Steps 1–3 mine T w , T i and T o from ES ( Event Set ). Step 4 re- 
trieves PostCL and PPPara from ES . And step 5 is the key step in 
the algorithm which constructs the set of all MTSP (Max Pre-Post 
Task Set Pair of places) based on the PostCL and PPPara . The details 
of step 5 are shown in the method Core in Table 4 . The inputs of 
Core include an empty set used to store the MTSP s, PostCL , and PP- 
Para . Each causal dependency in PostCL would be processed in Core . 
If the entry to be added is c = ( a,b ) 0 then the TSP = ({ a },{ b }) will 
be generated and all remaining entries in PostCL will be iteratively 
compared with the existing entries in the TSP by method Merge 
with the input of TSP = ({ a },{ b }). Step 6 of λ+ is to generate the 
set of places with Y w and step 7 is to generate the set of flows 
between places and tasks. In the end the formal workflow net is 
generated with P w ,T w and F w . 

4.4. Case study 
The process of discovering real execution model of the support- 

ing software system of the business process showing in Fig. 2 will 
be used as a case study to illustrate how our discovery method 
helps software evolution in software cybernetics. We firstly make 
a resource tracking log ( Fig. 4 (a) shows a part of it) by simulating 
three patients registering in the hospital with the Patient Regis- 
tration System . Then transform this log into the augmented event 
log with pre and post tasks shown in Fig. 4 (b). Since the discovery 
method is conducted based on the augmented event logs, the first 
two steps are the key work in applying our discovery method to 
find software execution process model. The details of λ+ algorithm 
will be shown by generating the model representing the real 
software behavior from the log in Fig. 4 (b). (The effort s used in 
transforming the logs are taken into account in the efficiency 
calculating in Section 5.2 .) 

Based on ES constructed from Fig. 4 (b), λ+ mines the execution 
process model in the following steps: 
1. T w = {R, LU, LH, DoC, DeC, Pr, MP, P, OT, LC, LO, BHN, PT} 
2. T i = {R} 
3. T o = {LO} 
4. PostCL (i.e., Post Causal Dependency List, the list of causal de- 

pendencies derived from the current task and its post tasks in 
event entries) is [R → w LU,DoC → w Pr,Pr → w MP,Pr → w P,MP → w OT, 
P → w OT,OT → w LC,LC → w LO, LC → w LO,LH → w LU,LU → w LH,LU → 
w DoC,DoC → w DeC,DeC → w DeC,DeC → w DoC,DoC → w BHN,BHN → 
w P,BHN → w PT,P → w PT,PT → w LC]. 
PPPara (i.e., Pre-Post Parallelism Set, the set of all par- 
allel relationships derived from the event entries) is 
{MP|| w P,P|| w PT,BHN|| w P}. 

5. Y w = {({R,LH},{LU}),({LU,DeC,DoC},{DoC,LH,DeC,Pr,BHN}),({Pr}, 
{MP}),({Pr,BHN},{P}),({BHN},{PT}),({MP},{OT}),({P},{OT,PT}), 
({OT,PT},{LC}),({LC},{LO})}. 

6. P w is all the places in Y w adding input and output places. 
7. F w is the set of all flows between t in T w and p in P w . 
8. λ+ (W) = (P w , T w , F w ) 

We have already implemented the λ+ algorithm as a plug-in in 
ProM ( Process Mining , the framework for process mining 2 ). Fig. 5 

2 ProM is described at http://www.processmining.org/ and can be downloaded 
from http://www.promtools.org/prom6/ . 

http://www.processmining.org/
http://www.promtools.org/prom6/
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Fig. 4. The logs used in discovering real behavior of the supporting software of Patient Registration System. 

Fig. 5. Result model of handling the log in Table 2 in ProM. 
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Fig. 6. The result model of extending and merging the sub-structures in Fig. 3 (b), 
(g) and (h). 
shows the resulting model mined by ProM with the input event 
log shown in Table 2. 

By comparing the mined execution process model in Fig. 5 with 
the original designed software model shown in Fig. 2 , it shows 
that the model of the implemented process supporting software 
is not consistent with the original requirements because the 
task DoC is also a one-length loop as the task DeC . According 
to the difference between the pre-defined execution process and 
the running one, the potential problem of the business process 
is pointed out. This shows that a complete feedback loop from 
process discovery to process adjustment is formed in software 
evolution process from the software cybernetics point of view in 
the context of BPM. With the precise feedback of real software 
behavior, the evolution process will be accelerated. 

The result shown in Fig. 5 demonstrates the correctness of 
λ+ in mining five special (i.e., Fig. 3 (a), (c), (d)–(f)) structures in 
the process model. Next, we will evaluate the algorithm λ+ by 
proving the mining ability formally and by comparing the mining 
efficiency with other algorithms. 
5. Evaluations 
5.1. Formal proofs of mining ability 

In the research of software cybernetics, exploring feedback 
mechanism is a very important activity to make better reuse of 
software experience, improve software process as well as the qual- 
ity of controlled software itself. The accuracy of the feedback is 
the key factor to measure the quality of the feedback mechanism. 
For example, in software evolution process discussed in this paper, 
to what extent the mined execution process model representing 
the behavior of the running software system determines to what 
extent the evolution process would benefit the supporting soft- 
ware of the business process. That is to say the mining ability 
of our proposed discovery method leads a very important role 
in the evolution process from the software cybernetics point of 
view. So, we firstly prove that our proposed discovery method can 
mine all the sub-structures shown in Fig. 3 correctly. Since the 
case study in Section 4.4 has proved the ability of mining five of 
them correctly, we only prove the mining ability for other three 
sub-structures (i.e., Fig. 3 (b), (g) and (h)) formally here. Actually, 
the proofs for different sub-structures are similar to each other. In 
order to describe clearly, we extend and merge the sub-structures 
in Fig. 3 (b), (g) and (h) as shown in Fig. 6. 

Then the problem is to prove the new algorithm can mine 
place p 1 , p 2 , p 3 , p 4 , p 5 and p 6 in Fig. 6 . Here is the proof: 
Proof. According to the definition of the event logs with pre and 
post tasks, there must be events: 

e 1 = [ t 1 , t 3 ] t 5 […], e 2 = [ t 2 , t 4 ] t 5 […], e 3 = [ t 1 , t 4 ] t 5 […], e 4 = [ t 2 , t 3 ] 
t 5 […], e 5 = [ …] t 6 [ t 7 , t 9 ], e 6 = [ t 6 ] t 9 [ t 7 ], e 7 = [ t 6 , t 9 ] t 7 [ t 7 ], e 8 = 
[ t 7 ] t 7 [ t 7 ], e 9 = [ t 7 ] t 7 [ t 8 , t 10 ], e 10 = [ t 7 ] t 8 [ t 10 ], e 11 = [ t 7 , t 8 ] t 10 […] 

Mine p 1 and p 2 : 
From e 1 , e 2 , e 3 and e 4 , causal dependencies, t 1 → w t 5 , t 2 → w t 5 , 

t 3 → w t 5 , t 4 → w t 5 and parallelisms, t 1 || w t 3 , t 1 || w t 4 , t 2 || w t 3 , t 2 || w t 4 , 
can be derived. Then t 1 → w t 5 can be merged with t 2 → w t 5 and 

t 3 → w t 5 can be merged with t 4 → w t 5 according to method Merge 
in Table 3 . So the MTSP (i.e., Max Pre-Post Task Set Pair) of p 1 and 
p 2 are generated: ({ t 1 , t 2 },{ t 5 }) and ({ t 3 , t 4 },{ t 5 }). 

Mine p 3 , p 4 , p 5 , and p 6 : 
According to events e i , i ∈ [5,11], there are causal dependencies 

t 6 → w t 7 , t 6 → w t 9 , t 9 → w t 7 , t 7 → w t 8 , t 7 → w t 10 , t 8 → w t 10 and t 7 → w t 7 , 
and parallelisms t 6 || w t 9 , t 8 || w t 10 , t 7 || w t 8 and t 7 || w t 9 . But accord- 
ing to the property mentioned after Definition 9 , the parallelisms 
t 7 || w t 8 and t 7 || w t 9 need to be ignored since there is an event e 8 
= [ t 7 ] t 7 [ t 7 ]. Then t 6 → w t 7 , t 7 → w t 8 and t 7 → w t 7 are merged into 
the MTSP (({ t 6 , t 7 },{ t 7 , t 8 })) for p 3 . t 9 → w t 7 , t 7 → w t 10 and t 7 → w t 7 are 
merged into the MTSP (({ t 9 , t 7 },{ t 7 , t 10 })) for p 6 . t 6 → w t 9 and t 8 → w t 10 
are remained for constructing the MTSPs (({ t 6 },{ t 9 }) and ({ t 8 },{ t 10 })) 
for p 4 and p 5 separately. 

Based on the proofs of algorithm λ+ ’s mining ability, it is ob- 
vious that λ+ can handle more sub-structures than other existing 
mining algorithms (i.e., α, α+ , λ, α++ , α# and β) by using the 
augmented input event logs in discovering running behavior of 
software systems for the usage in software evolution in software 
cybernetics. 
5.2. Comparisons of mining efficiency 

It was implied in Liu et al. (2006) that the efficiency of online 
system analysis and evolution in software cybernetics is greatly 
important. So it is very important to improve the efficiency of 
software execution process discovery techniques which helps to 
analyze software systems. Here, we aim at proving that our new 
method does better than others in mining efficiency. 

For comparing the mining efficiency of different mining meth- 
ods, we have done experiments using PIPE and ProM, where we 
discover the execution models of the running systems with each 
method from its corresponding event logs and the executing times 
are recorded (the experiments were conducted for many times and 
only the average execution times are used). Among the mining 
methods based on traditional event logs, the mining efficiency of 
algorithm α is higher than that of others. Therefore, algorithm α
is chosen as a representation of traditional event-log-based mining 
algorithms in comparison. Since the core of method, i.e., algorithm 
λ+ , is inherited from λ, the mining efficiency of the method using 
algorithm λ is also used for comparison. Therefore, the three 
discovery methods are represented by algorithms α, λ and λ+ . 

Firstly, we make a comparison between the methods based on 
the Patient Registration System and the result is shown in Fig. 8 (a) 
(the execution times are recorded in Table 5 ). Table 6 shows the 
results of paired T -Tests between times pairs used by ( α, λ+ ) and 
( λ, λ+ ) for proving the statistic significances of the differences. It 
is obvious that our new method is much more efficient than the 
others. 

In order to prove either the number of tasks or the type of 
the structures the process has cannot influence the differences 
between the executing times of the three methods, we also 
make comparisons based on the models having the same struc- 
tures (only choices) but different number of tasks (the models 
in Fig. 7 (d), the result in Fig. 8 (b)) and the models having the 
same number of tasks but different structures (i.e., sequence (the 
model in Fig. 7 (a), the result in Fig. 8 (c)), parallelisms (the model 
in Fig. 7 (b), the result in Fig. 8 (d)), and choices (the model in 
Fig. 7 (c), the result in Fig. 8 (e))). We claim that all the used data 
in the comparison have passed the statistic significance tests. 

The result shown in Fig. 8 tells that no matter how many 
tasks or no matter what kinds of structures the software system 
contains, the method we propose in this paper discovers that the 
execution process model from the corresponding system logs is 
much faster than the other methods. That means our method 
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Table 5 
Executing Times used by for mining Patient Registration System with different number of cases. 

Method The execution times of the corresponding number of cases ( ns ) 
100 200 300 400 500 600 700 800 900 10 0 0 

λ+ 2,014,860 2,428,977 3,048,0 0 0 3,775,974 4,287,138 5,014,821 5,644,837 6,228,891 6,743,951 7,427,982 
λ 76,289,454 79,243,732 84,424,420 90,488,233 97,305,230 107,885,704 119,651,707 129,685,919 142,579,556 159,897,400 
α 43,018,485 76,509,473 105,4 98,4 84 140,476,442 176,117,768 203,566,483 244,181,743 269,447,660 305,809,976 342,610,001 

Table 6 
Paired T -tests of execution times: ( λ+ , α) and ( λ+ , λ) on Patient Registration System . 

Method pairs Paired differences P -values 
Mean Std. deviation Std. error mean 

λ+ −α −1 .04084E8 26659667 .02481 8430526 .94601 .0 0 0 
λ+ −λ −1 .86062E8 98365097 .63166 31105775 .07809 .0 0 0 

Fig. 7. The models used in the experiment. 

Fig. 8. Comparison between three mining methods in handling different models with different number of tasks or different structures. 
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Fig. 9. The possible mined results of λ+ in handling the logs of N 2 . 

Fig. 10. The discovered result of other mining algorithms in handling the logs of 
N 2 . 
is more suitable for generating software behavior feedback for 
evolution in software cybernetics. 
5.3. Limitations 

Even though it has been said that the new algorithm can mine 
almost all structures in software systems whose execution process 
models can be represented by sound WF-nets correctly, it cannot 
rediscover N 2 in Fig. 9 accurately since N 3 may also come out as 
the result, which means if the execution process model of the 
software contains the following structures, our discovery method 
may generate inaccurate feedback for its evolution process. 

N 3 is sound and its event logs are completely the same as 
N 2 ’s. The λ+ algorithm has no idea to distinguish N 3 from N 2 
because they are not Well - structured WF-nets. The definition of 
Well - structured is: 
Definition 15. (Well-handled/Well-structured van der Aalst et al., 
1998 ). Petri net PN = ( P,T,F ) is well-handled iff ∀ x,y ∈ P ∪ T and one of 
them is a place, another is a transition: ∀ C 1 , C 2 are two paths from 
x to y , if α( C 1 ) ∪ α( C 2 ) = { x, y } then C 1 = C 2 . And the Workflow net 
extended from PN is well-structured iff PN is well-handled. 

The method α here is getting the names of all places and tran- 
sitions on a path. The definition of Well-structured tells that the 
and - split structure must be followed by an and - join and the or - split 
must be followed by an or - join in workflow nets. 

The limitation of the new mining algorithm λ+ is that if the 
model contains the symmetrical non-well-structured subnet, it 
might fail to rediscover the model. For example, while handling 
the event logs of N 2 , the process model that the new algorithm 
discovered may be N 2 or N 3 instead the one shown in N 4 ( Fig. 10 ). 
6. Related works 

Cybernetics and Software Cybernetics: Cybernetics was used by 
Norbert Wiener as an umbrella term to cover control and com- 
munication in the animal and the machine ( Norbert, 1948 ). It is 
much more about governance than control. A governor should be 
a server rather than a controller ( Filev et al., 2013 ). In Yamalidou 
et al. (1996) , a method for constructing a Petri net controller for 
discrete event system modeled by a Petri nets is proposed. To gov- 
ern a system or an organization, it relies more on the feedback of 
the system or organization. As a result, what cybernetics strength- 
ens is to make the system or organization much more effective 

and efficient. In the context of software cybernetics, software 
problems are treated as a control problem ( Cai et al., 2002 ). So, 
sub-processes in software process, such as software requirements 
engineering ( Xu et al., 2006; White, 2013 ) and software testing 
( Miller et al., 2006 ), are interpreted from the cybernetics point of 
view. In ( Xu et al., 2006 ), Requirements Process Control (RPC) is 
proposed and 66 key practices of Requirements Engineering Good 
Practice Guide (REGPG) are mapped to different com ponents in the 
control system. It finds that there are only 5 good RE practices that 
have been recommended in measuring elements with 18 in actua- 
tors and series compensation, 17 in feedback compensation, and 51 
in organizational support. In ( Miller et al., 2006 ), the Model Predic- 
tive Control (MPC) technique is applied to the software system test 
phase (STP) with an improved calibration algorithm. The results 
of the experiments conducted on a STP that lasted 120 days over 
which 95% defects were discovered and removed show that the 
proposed control method successfully achieves the schedule and 
quality objectives of the STP that achieves 90% defect reduction 
at day 70. In Kenett (2011) , it is suggested to expand the original 
scope of Software Cybernetics and turn it into a natural platform 
for integrating a wide range of disciplines and methodologies 
addressing challenges of current and future software systems. 

Cybernetics in BPM: Business Process Management (BPM) is a 
study of supporting business processes using methods, techniques, 
and software to design, enact, control, and analyze operational 
processes involving humans, organizations, applications, docu- 
ments and other sources of information ( van der Aalst et al., 
2003 ). Cybernetics in BPM concerns how to improve the perfor- 
mance of the process by the feedback of the process. The most 
common style of feedbacks of the running processes is the system 
logs and process mining is the technique for making the feedbacks 
easier to use. Besides, the information generated by process dis- 
covery can help to understand the software requirements, design 
the software architecture and model the entire software system in 
early software process. 

Process Discovery: Process discovery is used for interpreting 
the system logs into visualized process models ( van der Aalst, 
2012a; van der Aalst et al., 2012b ). It is the basic technique serving 
cybernetics in BPM. There have been many algorithms for process 
discovery using event logs made by workflow systems and they 
are separated into two types: 1). the event logs only contain tasks, 
such as α, α+ , α++ , α# and β , and 2). the event logs contain the 
time information, such as adding time constraints on transitions 
( Li et al., 2004 ) or on places ( Zeng et al., 2008 ). But these methods 
have limitations in mining structures in Fig. 3 . There are also 
methods based on the concept of region used in Petri-net ( van 
der Werf et al., 2009 ). The region-based methods which have 
the same destination with genetic methods ( van der Aalst et al., 
2005 ) aim at breaking restricts on completeness or non-noise 
of event logs ( Carmona et al., 2010 ) to improve the tolerance of 
low quality logs. But their mining efficiency is even relatively 
lower than that of traditional algorithms. Although algorithm λ
improves the mining efficiency by adding post tasks into the 
event logs, it cannot make sure to discover all implicit places and 
implicit dependencies. Compared with these existing algorithms, 
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our method makes progresses in (1) extending mining scope to 
cover all special structures shown in Fig. 3 , (2) improving mining 
efficiency by more than 90% in handling event logs with 10 0 0 
running cases and thirteen tasks. 
7. Comparison between Petri nets and software cybernetics 

A Petri net is a mathematical modeling language for stepwise 
processes that include choice, iteration and concurrent execution 
and it was invented by Carl Adam Petri for the purpose of describ- 
ing chemical processes ( Reisig, 1985 ). There are many extensions 
of standard Petri nets, such as Colored Petri nets ( Jensen, 1997 ), 
Object Petri nets ( Valk, 2004 ) and Prioritized Petri nets ( Guan 
et al., 1998 ). 

The motivation of the research of software cybernetics is 
exploring whether or not and how software behavior can be 
controlled ( Cai et al., 2004 ). Here software stands for software 
development process, software maintenance process, software 
evolution process and all related artifacts delivered during these 
processes including the developed software system. Cybernetics 
means the control and communication in the pre-mentioned 
software including software processes and software systems. 

In this section, we mainly try to answer the open question 
where the connections between Petri nets and software cybernet- 
ics are or what they can do and they cannot do. First as a useful 
concurrency process modeling language, Petri nets can provide 
basic modeling services ( Yu et al., 2014 ) for processes or software 
systems concerned in software cybernetics, including structures of 
sequence, choice, parallelisms and loops. What is more important 
is the special ability of Petri nets in modeling the system with 
control conception in software cybernetics. For example, there are 
specialized Petri nets for usage in control theory, such as the Petri 
nets used in discrete, continuous and hybrid control theory ( David 
and Alla, 2005 ). The control systems are separated into two types, 
the open-loop ones and the closed-loop ones, according to the 
existence of feedback mechanism. No matter there is feedback or 
not, Petri nets can do well in modeling the control system. Second, 
the Petri nets related process theory can be used in analyzing, 
testing and verifying the benefits brought by software cybernetics 
to their studied processes or systems. For example, in ( Miller 
et al., 2006 ), the process model related theory of Model Predictive 
Control (MPC) was introduced in calculating the impacts of control 
actions on the software test phase. However, the control theory 
discussed in software cybernetics is applied to processes and soft- 
ware systems talked about in software engineering, which means 
Petri nets cannot contribute to software cybernetics with soft- 
ware engineering related theories, such as definitions of software 
requirements, development, testing, maintenance and evolution 
processes as well as the good practices which could improve these 
software processes. For example, Petri nets related theory may tell 
whether or not or even in what extent a given software practice 
principle can influence the given software process, but it cannot 
create any practice principle that can influence software processes. 
In software cybernetics, the software engineering related process 
knowledge (e.g., practice principle, target deadline, software qual- 
ity et al.) should be transformed into parameters which could 
be utilized by Petri nets analyzing techniques so as to serve the 
studied software processes better. 

As to software cybernetics, the main benefited body is software 
engineering related studies and the instruction tool is control the- 
ory. So basically, what software cybernetics can do is to enhance 
the quality and efficiency of software engineering by bringing 
exact control knowledge ( Hu et al., 2013 ) as well as Petri nets 
theory to the research domain. Further more, considering the 
characteristics of software system and engineering, research of 
software cybernetics may help to invent novel control techniques 

suitable for software processes or systems ( Liu et al., 2012; Zhu 
et al., 2013 ). For example, there may be closed-loop control with 
more than one kind of feedbacks or with special feedback ana- 
lyzing techniques. The discovery method proposed in this paper 
(i.e., a novel feedback generating technique for software evolution 
process) can just be viewed as an example of contribution of 
software cybernetics made to control theory. Till now, most dis- 
cussed and benefited software processes in software cybernetics 
are requirements process and testing process. More work should 
be done in applying control theory to software development, 
maintenance and evolution processes. 

In general, Petri nets serve more as a modeling language and 
an analyzing or verifying tool in software cybernetics and its main 
contribution is to cybernetics, while software cybernetics itself can 
both benefit software engineering and control theory. Considering 
the connection between Petri nets and software cybernetics, more 
works on how to apply behavior inheritance theory, soundness 
checking technique ( Liu and Jiang, 2015 ) and similarity measuring 
methods ( Dijkman et al., 2011 ) of Petri nets to software cybernet- 
ics, how to apply control theory to more software processes and 
how to develop creative control systems for software engineering 
research could be conducted. 
8. Conclusions and future work 

In this paper, we propose a novel software execution process 
discovery method to model software behavior from system logs 
for improving the system in the evolution process. From the 
software cybernetics point of view, the discovery technique is very 
useful in contributing to the evolution of business processes in 
the feedback mechanism. Besides, it can also contribute to the 
early phases in software process, such as requirements, design 
and modeling. Specifically, the mined execution process model 
derived from the works discussed in this paper contributes as a 
more understandable feedback of the running software system. 
The method we proposed can be split into two steps: (1) generate 
the augmented event logs with pre and post tasks, and (2) mine 
a proper execution process model from the augmented event logs. 
We have proved the feasibility of making the augmented event 
logs through discussing the generating strategies. Besides the real 
world Patient Registration System , we also developed a plug-in in 
PIPE for tracking the producers and consumers of resources used 
in supporting software systems of business processes to validate 
the feasibility of producing the augmented event logs. 

Compared to other existing discovery algorithm, the one we 
proposed is not only more effective but also more efficient. As 
for effectiveness, it can mine more special structures (i.e., implicit 
dependency, non-SWF-nets, one-loop and two-loop) and this is 
proved through the case study in Section 4.4 and the formal proof 
in Section 5.1 . As for efficiency, while handling the same process 
of a running system, the time used by our method is almost 
only one percent of others as showing in Table 5 . The results of 
T -tests in Table 6 illustrate that the efficiency of the new method 
is always significantly higher than those of other methods as 
the log’s capacity increases. Apart from that, the time increasing 
trends in Fig. 8 also show that no mater what kinds of structures 
the model has, the more tasks the process has the more time will 
be saved by our discovery method. 

The novel mining method improves the mining efficiency and 
ability in mining the process’s control flow with the help of the 
augmented event logs. But this is not the only challenge in process 
mining techniques. There are other challenges not considered in 
the proposed method, such as mining data flow or resource usage 
in the process efficiently and promoting the expression of the 
mined information, etc. However, the use of the augmented event 
logs will also create new research directions for process mining, 
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such as whether the new log would help to simplify conformance 
checking and similarity measuring between process models. 
According to them, our further research will be done in the fol- 
lowing directions: (1) make the discovery method more effective 
in mining the special structure like the one in Fig. 9 , ( 2 ) discover 
more data and resources related information of the process and 
link them to the control flow model of the execution process for 
better compliance checking, (3) do more research on how to make 
the augmented event logs useful in other process mining related 
techniques, such as conformance checking, similarity measuring 
between process models and process enhancement. 
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