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a b s t r a c t 

In order to make a software project succeed, it is necessary to determine the requirements for systems 

and to document them in a suitable manner. Many ways for requirements elicitation have been discussed. 

One way is to gather requirements with crowdsourcing methods, which has been discussed for years and 

is called crowdsourcing requirements engineering. User requests forums in open source communities, 

where users can propose their expected features of a software product, are common examples of plat- 

forms for gathering requirements from the crowd. Requirements collected from these platforms are of- 

ten informal text descriptions and we name them user requests. In order to transform user requests into 

structured software requirements, it is better to know the class of requirements that each request belongs 

to so that each request can be rewritten according to corresponding requirement templates. In this paper, 

we propose an effective classification methodology by employing both project-specific and non-project- 

specific keywords and machine learning algorithms. The proposed strategy does well in achieving high 

classification accuracy by using keywords as features, reducing considerable manual effort s in building 

machine learning based classifiers, and having stable performance in finding minority classes no matter 

how few instances they have. 

© 2018 Elsevier Inc. All rights reserved. 
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1. Introduction 

Software Requirements Engineering ( RE ) is a systematic and

discipline approach to the specification and management of re-

quirements. It is a very important phase in the software devel-

opment process and regardless of whether it belongs to a pon-

derous process model (e.g., the Waterfall model ( Royce, 1970 ) or

the V-Model ( V-Modell, 2004 ) or a lightweight process model (e.g.,

eXtreme Programming ( Beck, 20 0 0 )). According to the Standish

Group’s Chaos Report of 2015 ( Chaos, 2015 ), among all 8380 appli-

cations investigated, the success rate was only 16.2%, while chal-

lenged (i.e., the project is completed and operational but over-

budget, over the time estimate, and offers fewer features and func-

tions than originally specified) projects accounted for 52.7%, and

impaired (cancelled) for 31.1%. The three major reasons that a

project will succeed are user involvement (15.9%), executive man-

agement support (13.9%), and a clear statement of requirements

(13%). The three major factors that cause projects to be chal-

lenged are lack of user input (12.8%), incomplete requirements
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nd specifications (12.3%) and changing requirements and speci-

cations (11.8%). Opinions about why projects are impaired and

ltimately cancelled ranked incomplete requirements (13.1%) and

ack of user involvement (12.4%) at the top of the list. Almost

ll of these factors are related to software requirements engineer-

ng directly. This is solid evidence that the way the requirements

f a system are handled is a significant cause for project failures

 Pohl and Rupp, 2011 ). According to past studies, approximately 60

ercent of all errors in system development projects originate dur-

ng the phase of requirements engineering ( Boehm, 1981 ). The ulti-

ate goals of requirements engineering are to achieve a consensus

mong the stakeholders of their desires and needs on the product,

nd to document these requirements according to given standards.

ne of the most important artifacts in requirements engineering is

pecification, which plays a key role through the entire software

evelopment process. In order to write the requirements specifica-

ion, desires and needs of stakeholders towards the product should

e collected through meetings or any other communicating way

rstly. This fundamental phase is called requirements elicitation. 

In Snijders et al. (2015) , it is concluded that requirements

licitation is one of the most concerned work in requirements

ngineering, and the benefits of involving customers and users

f products in elicitation have been widely acknowledged since

https://doi.org/10.1016/j.jss.2017.12.028
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and and Sorensen (1975) showed that user participation helps in

vercoming resistance to change. However, customers and users

re often geographically distributed ( Cheng & Atlee, 2007 ) and

echnical and social environments are uncertain ( Hosseini et al.,

014 ). Besides, as the context of software usage changes, it is hard

o determine what kind of users will use the system in which en-

ironment and on which device. Applying crowdsourcing which is

he act of a company or institution taking a function once per-

ormed by employees and outsourcing it to an undefined network

f people in the form of an open call (Howe 2006) might help

n addressing these issues. So, crowdsourcing requirements engi-

eering (i.e., gathering software requirements from different stake-

olders, customers or users of the product through the Internet) is

ecoming an important way for software requirements elicitation.

ince every single stakeholder or customer gets an opportunity in

roposing his/her expectations of the products, the gathered re-

uirements will be more completed than those generated by only

eld meetings among majority stakeholders. The data gathered by

rowdsourcing requirements engineering will be used as input for

iscussing and documenting software specifications. In this paper,

e refer to the data submitted by stakeholders or customers as

ser requests. 

Since normal users are not trained or skilled experts, requests

ubmitted by them are often informal natural language descrip-

ions. Before adding user requests into the software requirements

pecification, they should be rewritten according to the given rules

r templates of software requirements. However, in software re-

uirements specifications, requirement items are grouped accord-

ng to their types, e.g., capability, usability, security and perfor-

ance, etc. Different types of requirements have different rules

r templates. Thus, to rewrite user requests efficiently, we should

rstly find the correct type of requirements it belongs to. This is

alled user requests classification. Except for having the benefit

f transforming user requests into structured requirements, clas-

ification also helps to handle duplications among user requests

recisely. First, requests have a same topic but different detailed

oncerns would be classified into different classes and this avoids

egarding them as duplications. Second, finding duplications with

ach single class of requests makes it more efficient. In open

ource projects, where rewriting user requests into structured re-

uirements is not necessary, classifying them into different classes

ill help project members determine handling sequence of re-

uests according to priorities of different requirements types. For

xample, security or reliability requests are often the more impor-

ant than capability or usability ones. However, manual classifica-

ion is time-consuming, and for large projects, error prone. So, au-

omated classification strategies, even partial, will be of great ben-

fit ( Vlas and Robinson, 2012 ). 

In crowdsourcing requirements projects, there may be more

han thousands of stakeholders and consumers and the number

f gathered requests can be huge. Vlas and Robinson (2012) pro-

ose a rule-based natural language strategy for requirements dis-

overy and classification in open source software development

rojects. A 2006 study by Cleland-Huang et al. (20 06, 20 07 ) also

xplores approaches to requirements discovery and classification.

heir work (i.e., processing the unstructured natural language user

equests with NLP techniques) is useful for detecting potential soft-

are requirements from all user submitted user requests. In our

esearch, we focus on the problem of classifying detected poten-

ial requirements (i.e., user requests) into corresponding require-

ents types. Different from Vlas and Robinson (2012) and Cleland-

uang et al. (20 06, 20 07 ), we make use of both project-specific

nd non-project-specific keywords, and employ machine-learning

echniques in our approach. In summary, the main contribution

e made in this paper is proposing a keywords-based machine ap-

roach to semi-automatically classify user requests in crowdsourc-
ng scenarios. The approach consists of four major parts, namely

xisting machine learning algorithm SVM, non-project-specific and

roject-specific keywords, heuristic properties of user requests, and

ctive learning strategy. 

For evaluating the proposed approach, we present results of ex-

eriments conducted on data sets collected from open source user

equest forums. These experiments are designed to answer the fol-

owing six research questions: 

RQ1 . How well can those user requests be classified by only using

widely used simple text features as input of machine learn-

ing algorithms, e.g., word unigram and TF-IDF? 

RQ2 . Will the classification accuracy of entire data set as well as

minority classes be improved by using keywords-based fea-

tures? 

RQ3 . To what extent are the proposed non-project-specific key-

words accepted by others? Are they more effective than

those proposed by others? 

RQ4 . Which machine learning algorithm that widely used in re-

quirements classification does best here, k-nearest neighbor,

Naïve Bayes or Support Vector Machine? 

RQ5 . Do the proposed Heuristic Properties of user requests help

improve the classification accuracy? 

RQ6 . Can keywords-based features help reduce the size of training

sets to achieve the same accuracy derived by using widely

used features? 

The remainder of this paper is laid out as follows. Section 2 in-

roduces related work. Section 3 describes the classes of user re-

uests defined by us and two kinds of keywords found by us.

ection 4 introduces our approach in detail and Section 5 presents

xperiments results and answers research questions, including

 subsection for discussing the entire study from different as-

ects. Section 6 analyzes threats to validity of our approach.

ection 7 concludes with a discussion of future work. 

. Related works 

We next present a summary of existing studies on crowdsourc-

ng requirements engineering, software requirements classification,

nd techniques used in natural language document classification. 

.1. Crowdsourcing requirements engineering 

Crowdsourcing represents the act of a company or institution

aking a function once performed by employees and outsourcing

t to an undefined (and generally large) network of people in the

orm of an open call (Howe 2006). In Brabham (2008) , Crowd-

ourcing is defined as an emerging, typically online, distributed

roblem solving and production model where a problem is solved

hrough the involvement of a large number of people. Many differ-

nt crowdsourcing systems on the Word-Wide Web were discussed

n Doan et al. (2011) , who show that crowdsourcing could be ap-

lied to a wide variety of problems. It was concluded that more

eneric platforms, more applications and structure, and more users

nd complex contributions were the three major developing di-

ections of crowdsourcing systems. As the uncertainty of technical

nd social environments has increased radically due to the ever-

ncreasing utilization of web-based systems, system developers and

oftware engineers encounter a wider audience of users, which

e call the general public, or the crowd. To cater the require-

ents of the crowd, it would be helpful to apply crowdsourcing

n requirements elicitation. Crowdsourcing in requirements elici-

ation has the potential to increase the quality and comprehen-

iveness and even the economic feasibility of requirements elic-

tation. The potential was investigated in Hosseini et al. (2014) ,
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who explore the relationship between the features of main con-

structs and quality of requirements elicited via crowdsourcing. A

more detailed Crowd-Centric Requirements Engineering Method is

proposed in Snijders et al. (2015) , who answer the question of how

crowdsourcing can be used to improve requirements engineering

in software production, including in which activities and to what

extent the quality of RE can be improved. Observing that the par-

ticipants with a particular kind of domain knowledge often have

the opportunity to cluster in particular spatiotemporal spaces, a

novel opportunistic participant recruitment framework was pro-

posed in Wang et al. (2014) to enable organizers in crowdsourcing

RE to recruit participants with desired kind of domain knowledge

in a more efficient way. Specialized crowdsourcing systems for re-

quirements elicitation are also discussed. A generic RE crowdsourc-

ing platform, CrowdREquire, is introduced in Adepetu et al. (2012) ,

where the business model, purpose, goals, stakeholders, and con-

text are well defined. Finkelstein and Lim (2012) introduced a way

to use social networks together with collaborative filtering tech-

nique to elicit large-scale requirements from the crowd. In order

to support rich data collection and volunteer participation effec-

tively and efficiently, high-level conceptual functionality and us-

ability requirements for a crowdsourcing task interface are pro-

duced in McKinley (2013) . Many commercial software firms rely

on open source software (OSS) communities as a source of inno-

vation and skilled labor ( Naparat and Finnegan, 2013 ). One spe-

cific form of interaction with open source software (OSS) com-

munities, termed ‘opensourcing’, involves firms collaborating with

an OSS community by ‘crowdsourcing’ software production. In

Naparat and Finnegan (2013) , how firms can collaborate with com-

munities to crowdsource the production of software was explained.

Different from others, Breaux and Schaub (2014) designed and con-

ducted concrete experiments to evaluate quality of crowdsourcing

by scaling requirements extraction tasks to the crowd. 

2.2. Natural language processing in software requirements 

engineering 

One of the most important outputs of software requirements

engineering is requirements specifications that are written in well-

defined and structured templates. Structured requirements tem-

plates do well in avoiding ambiguities that may arise from the use

of unrestricted natural language ( Arora et al., 2015 ). However, most

artifacts derived from requirements elicitation stage are described

in unstructured natural language. Transforming requirements from

free-form natural language into structured templates manually is

laborious. So, many natural language processing (NLP) techniques

are introduced in processing exiting requirements-related artifacts

or documents, such as user guidelines, user manuals, and re-

quest for proposals, to help in classifying sentences or retriev-

ing information from sentences for generating structured software

requirements ( Haiduc et al., 2016 ). Natural language document

classification techniques, which typically involve machine learn-

ing algorithms such as k-nearest neighbor (k-NN) ( Keller et al.,

1985 ), Naïve Bayes (NB) ( Rish, 2001 ), and Support Vector Ma-

chine (SVM) ( Suykens and Vandewalle, 1999 ), are widely used in

requirements artifacts classification ( Slankas and Williams, 2013;

Riaz et al., 2014 ). To represent requirements documents in clas-

sification algorithms, a bag of words (BOW), such as word uni-

gram, bigram, n-grams, and term frequency-inverse document fre-

quency (TF-IDF), is often used. Other NLP techniques, such as stop-

words removal, stemming, lemmatization, tense detection, are used

in pre-processing these documents ( Maalej and Nabil, 2015 ). In

Slankas and Williams (2013) , the Stanford Natural Language Parser

is used to pre-process each sentence in existing documents and

outputs a graph in the Stanford Type Dependency Representation

(STDR) based on the Part-of-Speech (POS) tag of each word. In
alvis and Winbladh (2013) , a Topic Modeling algorithm, Latent

irichlet Allocation (LDA), is used to derive evolved user require-

ents from user comments that are described in unrestricted nat-

ral language. In this paper, we also apply pre-processing methods

n input documents, use different representations of them, and try

o classify them with different machine learning algorithms. 

.3. Software requirements classification 

One of the most important tasks in software requirements engi-

eering is requirements classification. In research on the software

equirements lifecycle, a lot of works have been done on defining

easonable and comprehensive classes of software requirements.

ell-categorized requirement items would improve the quality of

equirement specification, which in turn improves the quality of

oftware ( Pohl and Rupp, 2011 ). In order to reduce the difficulty

n writing well-categorized requirements documents, techniques

or classifying elicited requirements into different classes automat-

cally are needed. Since we know how to determine the class of a

equirement, we could also retrieve it from a long document ac-

ording to its characters. Based on this idea, many methods for

lassifying and retrieving a specific class of requirements from ex-

sting software artifacts are developed, such as security require-

ents ( Slankas and Williams, 2013; Riaz et al., 2014 ) and usability

equirements ( Ormeño et al., 2013 ). In the requirements evolving

rocess where requirements are elicited from users in the forms

f bug reports, feature requests or simple comments, it is more

seful to determine the exact class of each requirement, because

ifferent classes of requirements would have different priorities in

mplementation in the next product release. So, in Casamayor et al.

2010), Vlas and Robinson (2012) and Zhang et al. (2011) , different

lassification methods for user submitted requests are proposed. 

. Classes of requirements 

As illustrated in Introduction section, classifying user requests

nto different types benefits in three ways, namely, writing well-

tructured requirements specification, handling duplicated require-

ents, and advising developers about sequence of implementing

eatures. However, we find there is no consensus on detailed des-

ination classes for classifying software requirements in existing

esearch. As shown in Table 1 , there are many different classifi-

ations of software requirements. Considering the ultimate goals

f user requests classification and normal structures of require-

ents specification, there is no need to classify requests into all

entioned classes of requirements. So, we group these classes into

even types (i.e., first column in Table 1 ) according to their prior-

ties considered by developers while implementing requests pro-

osed by users. Although the types defined by us are groups of

xisting requirements classes, we try our best to provide general

efinitions to make it easier for readers to understand. The defini-

ions of all types of user requests are: 

- Security (SE): Security refers to requirements discussing at-

tacks on purpose that threaten either the system or information

safety in all kinds of ways. 

- Reliability (RE): Reliability refers to the robustness, tolerance,

predictability and recoverability of the system. More generally,

it is the description of the frequency or severity of a system

failure, the accuracy of system reaction and its ability to recover

from failures. 

- Performance (PE): Performance is related to concerns on sys-

tem speed, efficiency, resource consumption and throughput,

etc. 

- Lifecycle (LI): By lifecycle, we mean the requirements of the

development of the project instead of the software itself, such
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as maintainability, enhanceability, portability, testability, exten- 

sibility, adaptability, configurability and installability. Also, it in-

cludes constraints on the development process, such as devel-

opment time limitations, resource availability and methodology

standards, etc. 

- Usability (US): The fundamental discipline of usability is that it

starts from human usage considerations. For example, if some-

thing should be implemented because it would make it conve-

nient for users to use the software, it is grouped into usability

category. 

- Capability (CA): Generally, capability corresponds to the func-

tional requirements in software requirements engineering. In

this paper, it refers to general and basic functions or features of

software and is closely related to realistic problems that soft-

ware should solve. 

- System Interface (SI): System interface refers to software in-

terfaces, hardware interfaces and definitions of communication

methods among people, software and hardware. 

Table 2 provides seven simple examples of labeled user re-

uests extracted from the user requests forum from an open source

roject, KeePass , 1 on sourceforge.net . 2 Analysts primarily rely on the

Summary” and “Description” sections for user requests classifica-

ion. A row in Table 2 is a user request proposed by a user to be

lassified. The “ID” field is only used for uniquely identifying a re-

uest but does not contribute to request understanding, and the

Summary” field is optional. If the “summary” is absent, the clas-

ification is entirely based on the “description”. In order to treat

Summary” and “Description” fairly, we will append the summary

o the description as a single sentence before data preprocessing.

n order to illustrate the relationship between a request and its la-

el, we also present reasons for labeling a request in Table 2 . Since

eyword plays a very important role in our approach for classifying

ser requests, we introduce both non-project-specific and project-

pecific keywords of each request type next. Non-project-specific

eywords are manually derived from analyzing definitions and

roperties of each type of software requirements, as well as re-

uirements ontologies and taxonomies ( Happel and Seedorf, 2006;

zung and Ohnishi, 2009; Rashwan et al., 2013 ). Besides, we refer

o Wikipedia pages related to introductions of each requirement

lass and some examples of software requirements specifications.

hese keywords are collected by four co-authors of this paper fol-

owing these steps: 

(1) everyone was given the same set of above mentioned docu-

ments, 

(2) each person found keywords of different types of requests

according to their own understanding of types’ definition

and the requirements ontologies and taxonomies found from

given documents, 

(3) words retrieved by different person were merged according

to request type, 

(4) we discussed about each word to determine if it can be

added into the keyword list ultimately. 

It is important to note that if the request contains keywords

f one type of requirements, it does not mean that it must be a

otential requirement of that type. If the request contains more

eywords of one type, it means there is a higher chance that this

equest should be classified as belonging to that type of require-

ents than others. Please note that the keywords we collected

ere may exist in more than one class of requirements. Here are
1 Homepage of open-source project KeePass is: https://sourceforge.net/projects/ 

eepass/?source=directory . 
2 It is an open-source community and homepage is: https://sourceforge.net/ . 

https://sourceforge.net/projects/keepass/?source=directory
https://sourceforge.net/
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Table 2 

Examples of features and their classes. 

ID Summary Description Class Reason 

1 Just generate 

password 

I have been looking for an app that does not store passwords and just generates them 

using a hash of a master password phrase and a sort of the hostname of the site. 

CA Request features on key functions 

of KeePass 

2 Linux version I think a Linux port is a good idea. I use both Windows and Linux but cannot use KeePass 

on my Linux OS. Please port KeePass to Linux. 

LI Portability: related to the 

development 

3 Only one running 

instance 

Users should only have one instance of KeePass running anytime, or it will cost more 

system resources. If a user started the program while the program was already running, 

the program should bring up the already running instance instead of starting a new one. 

PE The number of running instances 

influence the system 

performance 

4 Color setting is not 

saved 

When I assign a custom background in the Properties Tab of Edit Entry, this custom color 

is used correctly right now, but it is not kept on the edit entry window is closed. 

RE The setting not saved means a 

failure 

5 At the moment, anyone can change the master key of the database, even if he does not 

know the original one. It’s a big threaten to password safety. 

SE Request on protecting information 

security 

6 Firefox plugin Please write a Firefox plugin for import passwords from Firefox to KeePass. SI Interaction with another software 

7 It would be convenient for users to show numbers of entries near the group. US Considering convenience of user 
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3 Word2vec is a two-layer neural net that processes input text corpus and its 

make feature vectors for words in that corpus. Refer to page: https://deeplearning4j. 

org/word2vec . 
examples of non-project-specific keywords of each request type to-

gether with illustrations: 

- Security : Naturally, security concerns are expressed through

words related closely to the word “security” semantically. So,

words like safe, unsafe, secure, unsecure, safeguard, protect,

prevent, against, defend, forbid, warn, attack, harm, offense, of-

fender, risk, threaten, restrict and sensitive, etc., are included.

Words for expressing protection methods, such as encrypt, de-

crypt, read-only, password and confirm, etc., are also added into

this list. 

- Reliability : Requests of reliability often describe the expected

consequence that did not happen or unexpected results that

happened. In addition to words like reliable, reliability, robust,

correct, crash, exception, recovery, fail, wrong, error, problem,

incorrect, validate and bug that are derived from its definition

and taxonomies, we also add words that are useful in describ-

ing an unexpected condition, such as should, but, however, un-

fortunately, supposed, not, cannot, instead and result in, etc. 

- Performance : Keywords for performance are mainly derived

from its corresponding taxonomies ( Van Lamsweerde, 2009 ),

such as space, time, memory, storage, response, throughput,

speed, bandwidth, instance, resource, size, accuracy and effi-

ciency, etc. We also add words most related to these nouns,

such as limit, save, cost, waste, occupy, improve, reduce, delay,

long, short, fast, quick, slow, big, small, large and slow, etc. 

- Lifecycle : We include the words and their variants in the defi-

nition that are related to software process, such as platform, OS,

development, testing, debug, maintain, evolve, document, lo-

calize, manual, portable, configurable, installation, compile and

build, etc. If the user request mentions a name of a system plat-

form, a developing language, a file extension, or an operating

system, it is more likely to be a lifecycle requirement. So, the

common name of each of these entities are also used as key-

words, such as Java, Python, Linux, Windows, Ubuntu, Android,

.exe, .dll, etc. 

- Usability : According to the taxonomies of usability, words like

usage, use, usability, message, manually, readability, under-

standability, documentation, language and operability are in-

cluded. Besides, words for expressing the feelings of users be-

fore or after adding a new feature are also used as keywords,

such as useful, handy, convenient, hard, difficult, helpful, an-

noying, confuse and user-friendly, etc. Since usability requests

are often related to GUI and user operations on them, names of

UI components and verbs of actions on them are also included.

For example, the GUI components contain button, menu, di-

alog, window, panel and so on. Users’ actions contain open,

edit, choose, select, press, click, move, close, etc. Keyboard and

mouse are also important user interfaces, so names of keys,

such as Ctrl, Alt, Shift, and words related to keyboard and
mouse, such as shortcut, hotkey, are also included as keywords

of usability. 

- Capability : First, the alternatives of the word ‘capability’ should

be included in the list, such as ability, function and feature, etc.

Then variants of these words including capability should also

be added, such as capable, able and functionality, etc. Adjec-

tives and adverbs that one would use in proposing a capabil-

ity user request are also keywords, such as great, nice, possible

and certain, etc. At last, we include the verbs that one would

mention when proposing a new function request, such as add,

allow, enable, customize and implement, etc. 

- System Interface : According to the definition, there should be

communications between the current system and another one.

So, words implying a communication should be added firstly,

such as API, plugin, interface, return, callback, protocol, etc., as

well as words for describing an API, such as source, global, im-

port, package and library, etc. Protocols (except “http”) for com-

munications between systems are also used as keywords, such

as file://, ftp://, sftp://, etc. 

So far, we have only introduced the method for generating

ross-projects reusable keywords of each type of requirements and

ive examples of them. These keywords are just a part of those

sed in our classifiers. However, for different projects, there must

e words representing project specific knowledge that can be used

s keywords. In theory, by adding those words, the accuracy of

lassification should be improved. 

Regardless of whether user requests are collected through spe-

ialized platform in industry projects or through user forums in

pen source projects, there are simple descriptions of the projects

r the software that tell users the basic expectations of the prod-

ct and the project-specific background knowledge. In open source

ommunities, e.g. github.com and sourceforge.net , there are even

ummaries of the classified features listed on the homepage of the

roject. So, by reading the project description and the feature list,

e can derive project-specific requirement keywords. Another way

s to make use of the large number of unlabeled and yet to be clas-

ified user requests using the NLP technique Word2vec . 3 Word2vec

alculates a vector for each word to represent its meaning using

he words that appear in its contexts. Two words having similar

ectors are supposed to be similar to each other in the given in-

ut documents. As we already have non-project-specific keywords

f each type, we could use them as seeds to find more project-

pecific keywords that are similar to them via Word2vec. There are

wo concrete methods for finding similar keywords: 

https://deeplearning4j.org/word2vec
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Fig. 1. Overview of the framework for building the proposed classification approach. 
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(1) Words similar to each word in each type: use each word of

each type as a single seed, calculate its similarities with each

of the other words, and retrieve the k most similar words. 

(2) Words similar to the average of words in each type: calcu-

late the average vectors of all keywords in each type, find

the k words whose vectors are most similar to the average

one, or find the most similar one each time, then add it and

re-calculate the average vectors, until k words are added. 

Although Word2vec will take advantage of the large number of

nlabeled user requests and reduce the manual effort s in labeling

eywords, it is just a complementary way to find project-specific

eywords. Besides, each of these potential keywords should be

anually inspected and added to the list only if it makes intuitive

ense. After introducing three projects used in our experiments, we

ould present examples of project-specific keywords for them. 

. Approach 

Section 4.1 presents an overview of the framework we

sed in finding the approach for user requests classification.

ection 4.2 describes the features we choose to represent requests

n machine-learning-based classifiers. Section 4.3 introduces both

 simple non-learning-based classifier and the learning-based clas-

ifiers by illustrating four different machine-learning algorithms to

e used. 

.1. Overview 

As shown in Fig. 1 , the classification approach starts from man-

ally generating a list of reusable keywords (i.e., non-project spe-

ific keywords) of requirements obtained by analyzing software re-

uirements taxonomies. Considering domain differences between

rojects, we also retrieve project-specific keywords from project

escription and unlabeled user requests. Besides keywords, a group

f heuristic properties of requests summarized from informal nat-

ral language are also used as features in learning-based classi-

ers. In order to reduce the influence of different forms of a word,

e transform words into their basic lemma by using lemmatiza-

ion in preprocessing. All derived keywords are also lemmatized.

or training and evaluating learning-based classifiers, we manually

abel user requests according to the class definitions presented in

ection 3 . In order to find the learning-based approach with the

ighest classification accuracy, we train, test and compare differ-

nt classifiers using different combinations of representations of

ser requests and machine-learning algorithms. Besides keywords
nd heuristic properties, we also employ techniques in natural

anguage processing to represent request documents for machine-

earning algorithms, such as word unigrams and TF-IDF, which are

idely used in document classification research. Supervised ma-

hine learning algorithms such as k-NN, Naïve Bayes and Support

ector Machine are used in building classifiers. To highlight the

dvantage of learning-based classification approaches, we build a

imple non-learning-based classifier with number of keywords as

 baseline. 

.2. Representations of user requests 

As shown in the first three columns of Table 2 , the input of

 classification approach is a user request consisting of request

ecords, each of which contains a textual “description” and an op-

ional “summary”. In training learning-based classifiers, in order to

reate input for machine learning algorithms, we need to trans-

orm these request items into other formats. We use four kinds of

epresentations of textual requests, as described below. 

.2.1. Word unigram and keyword unigram 

In the word unigram format, each request record is represented

s a binary-valued vector of features, where each feature corre-

ponds to a distinct word that appears in the training set. Specif-

cally, if the feature corresponds to a word that appears in the

ecord, its value is 1; otherwise, its value is 0. In other words,

he vector indicates the presence or absence of a word in the cor-

esponding record. Also note that we did not remove stop words

rom the vector, as preliminary experiments indicated that results

eteriorated slightly with their removal. This makes sense because

top words play an important role in textual expressions of peo-

le’s ideas. Taking stopwords but and not in the 4th request in

able 2 as examples, the absence of expected appearance that in-

icates the unreliability of the software would not be expressed

ithout them. Besides, you would feel strongly how badly the se-

urity situation is while reading stopwords anyone can in the 5th

equest in Table 2 . So, in all representations of user requests, we

o not remove stop words. The reason for trying word unigrams

s that it is a widely used technique in document classification.

lassifiers based solely on word unigrams will also be used in the

omparison among all classifiers. Since we have already identified

ll keywords of each type of requirements, we can also use only

eywords instead of all distinct words appear in the training set to

alculate the features, which we refer to as keyword unigrams. 
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4.2.2. Word frequency and keyword frequency 

In the word frequency format, each request record is also rep-

resented as a binary-valued vector of features, where each feature

also corresponds to a distinct word that appears in the training

set. The difference is that the value of each feature is its frequency

of occurrence in the record. However, in preliminary experiments,

the performance of using the frequency of a distinct word in the

training set as a single feature is not as high as only using the

frequency of a keyword of each type as a feature. So, we will only

present experiment results of using keyword frequency in the eval-

uation section. 

4.2.3. TF-IDF 

Both word unigram and word frequency are types of the basic

representation of a document called bag of words (BOWs). TF-IDF

is another common type of BOW: it is a more complex alternative

to word frequency. Typically, the TF-IDF weight is computed as the

product of two terms: the first computes the normalized Term Fre-

quency (TF), i.e., the number of times a word appears in a docu-

ment; the second term is the Inverse Document Frequency (IDF),

which measures how important a term is. Since documents differ

in length, it is possible that a term would appear many more times

in a long document than in the shorter ones. Thus, the term fre-

quency is often divided by the total number of words in the doc-

ument as a way of normalization. While computing TF, all terms

are considered equally important. However, it is known that cer-

tain terms, such as “is”, “of”, and “the”, may appear a lot of times

but have little importance. Thus we need to weight down the fre-

quent terms while scale up the rare ones. Here is the formula for

calculating TF-IDF of a word w in document d : 

TF − IDF ( w , d ) = TF ( w , d ) ∗ IDF ( w ) , where (1)

TF ( w, d ) = ( frequency of w in d ) / ( number of words in d ) , and 

(2)

IDF ( w ) = log _ e( numb er of documents in the corpus / 

× number of documents with w in it ) (3)

4.2.4. Heuristic property of user request 

Each user request can be split into different parts and there are

certain parts that strongly imply the potential classes of the re-

quest. For example, in usability requests, there may be a part for

expressing the convenience that the proposed feature would bring

to users or the inconvenience that users would suffer from with-

out this feature, and the convenience and inconvenience descrip-

tions both strongly imply that this is a usability request. We name

different parts of a request that imply its classes Heuristic Property

(HP). Since a user request may have different HP implying differ-

ent request types and a single HP may imply more than one re-

quest type, we will explore the relationship among HP and request

classes by using HP as a kind of feature to represent the user re-

quests in learning-based classifiers. 

The heuristic property of requests is similar to the Linguistic

Pattern proposed by Toro et al. (1999) and the Level 2 (L-2) in

Requirements Classification for Natural Language (RCNL) ontology

proposed by Vlas and Robinson (2012) . Linguistic Patterns are most

often used words, phrases or sentences in natural language re-

quirements descriptions that can be parameterized and integrated

into requirements templates. l -2 in the RCNL ontology defines ex-

pressions of contexts that can indicate a requirement. However,

there are also significant differences between HP and the others.

Linguistic Patterns are proposed to improve requirements elicita-

tion and expression in the early phase in requirements engineer-

ing and they are pre-defined by experts, while HPs are derived
rom existing user requests. Although specific expressions in l -2

f RCNL ontology are also extracted from user requests, they are

sed to retrieve all types of requests while the HPs defined by us

re for figuring out the exact class of a request. Besides, concrete

oncerns in l -2 of the RCNL ontology, which are contexts of be-

ief, certainty, necessity, preference, qualifier, quantifier, qualifying

hrase, are different from those of HPs. 

We define seven heuristic properties for user requests. Their

ames and definitions are: 

(1) System Capability : The core functions of the system that the

owner of the request wants to be implemented. 

(2) Rationale: The benefits of implementing this request, or un-

expected or negative things that would happen if this re-

quest were not implemented. 

(3) Related Existing Capabilities : The existing function or com-

ponent that is related to the proposed request. 

(4) Expected or Unexpected Behavior : What the system should

or should not behave according to the request. 

(5) Context : The conditions under which the expected or unex-

pected behavior should or should not appear. 

(6) Implementation Instructions : It concerns how to imple-

ment the request function, for example, steps that the de-

velopers should follow to develop the requested function. 

(7) Examples : Examples for illustrating anything proposed in

the request. 

While used as features for training learning based classifiers,

alues for each HP can only be ‘0 ′ or ‘1 ′ . If there is no sentence

n the request corresponding to a HP, the value for that HP is ‘0 ′ 
therwise it is ‘1 ′ . We do not retrieve words that represent the

ontent of a HP to check if that HP exists in one user request. Just

ike Linguistic Pattern proposed by Toro et al. (1999) , we define pat-

erns of common expressions for each HP. If one request matches

ny expression belonging to a HP, then the value for that HP in

his request is set to ‘1 ′ and otherwise ‘0 ′ . In other words, we only

eed to check the existence of common expressions that imply the

xistence of HP in each user request to calculate values for HPs.

able 3 shows some example patterns of expressions of different

Ps. 

Besides values for HPs, we also calculate the other four values

o be used as features of user requests. These values are motivated

y natural language processing approaches using Conditional Ran-

om Fields (CRF) ( Jiao et al., 2006 ), where index of words or sen-

ences, and number of sentences are often used as features of data

nstances. In the remaining parts of this paper, the four values are

lso viewed as a part of HPs. The four values are: 

(1) Index of sentence introducing System Capability : if there is

no such sentence, the value is ‘0 ′ ; if it is the first sentence,

the value is ‘1 ′ ; otherwise, it is ‘2 ′ . 
(2) Times that words refer to human beings appear: words like

I, you, we, user, etc. 

(3) Times that words refer to system or system components ap-

pear: words represent the name of the system ; words like

program, software, system, database, etc.; words represent

the name of a UI component , etc. 

(4) Number of sentences that do not contain any one of the

aforementioned HPs in the request. 

All these HPs’ influences on classification accuracy of user re-

uest are investigated in Section 5.2 . 

.3. Classifiers 

We use the keyword-based requirements classification method

roposed by Cleland-Huang (2009) as a basic classifier that is used

or comparing with the learning-based ones. 
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Table 3 

Example patterns of common expressions of different Heuristic properties. 

System Capability Sentence starts with a verb or the word Please followed by a verb ; Interrogative sentence starts with Can / Will you / it, 

How / What about, Why not or Is it possible etc.; Declarative sentence starts with It will be adjective to / if or I would like 

to / appreciate / propose / want / recommend / am looking forward etc. 

Rationale Sentence contains so that, I think, that way, since, because, as…when, then…can / be able to , or the reason , etc. 

Related Existing Capability Sentence contains current, currently, sometimes, cases, now, every time, at the moment , or presently, unfortunately , etc. 

Expected or Unexpected Behavior Sentence contains should, should not, however …not, but …not, in addition to, rather than, instead of, even …not , etc. 

Context Sentence contains when, if, while, after, before , etc. 

Implementation Instructions Sentences in a raw and start with First, Second, Next or Then, Last , etc. respectively. 

Examples Sentence contains for example , e.g., i.e., like / as in, same as, different from, similar to, such as , etc. 
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.3.1. Basic classifier 

First, the frequencies of keywords of different types of requests

re calculated for each request. In Cleland-Huang et al. (2009) , a

equest will be classified as a candidate of all classes if it contains

ne or more of their keywords. So, a request may be classified into

ore than one category, and it is the same with the classification

ethod proposed in Vlas and Robinson (2012) , which is based on

he Requirement Classification Natural Language Ontology. How-

ver, the goal of our approach is to determine only one class for

ach request. So, we will classify the request into the class that

he request contains most keywords of it. If there is more than one

lass that the request should be classified, we break ties by select-

ng the class that has less request instances in the entire dataset. 

.3.2. Learning-Based classifiers 

After the feature vectors of user requests are calculated, we ap-

ly off-the-shelf machine learning algorithms to train classifiers

hat can be used to classify unseen records to one of the pre-

efined request categories. In other learning-based structured or

nstructured requirements classification research ( Casamayor et al.,

010; Zhang et al., 2011; Riaz et al., 2014 ), the most used machine

earning algorithms are k-nearest neighbor (k-NN), Naïve Bayes

NB) and Support Vector Machine (SVM). We will evaluate all these

earning algorithms by training the corresponding learned classi-

ers. 

For SVM and NB, we try both the binary (B) and the multi-

lass (M) versions. While using binary classifiers, we adopt the

ne-versus-others training scheme, where we train one SVM/NB

lassifier for each class. For instance, we train one classifier for de-

ermining whether a record belongs to Capability, another classi-

er for determining whether a record belongs to Usability, etc. In

ssence, each classifier represents exactly one requirement class,

nd the number of SVM/NB classifiers we train is equal to the

umber of requirement classes. The training set for training each

f these classifiers, of course, is different from each other. Specifi-

ally, to train a classifier for determining whether a record belongs

o class i , we take the pre-processed training set and assign the

lass value of each training instance as follows. If the training in-

tance belongs to class i , its class value is 1; otherwise, its class

alue is 0. While classifying a test record, each classifier will cal-

ulate the posterior probability of the record belonging to the pre-

icted class. As a result, we assign to a request record the class

hose classifier returns the highest probability value among the

et of values returned by all the classifiers. The process of training

ulticlass versions of SVM and NB is simpler. Only one SVM/NB

lassifier needs to be trained with the prepared training set where

ach request record is labeled with its correct class. In testing, each

est record is delivered to the only one classifier and it will return

ts predicted class. 

In order to reduce the number of required labeled requests for

raining a classifier, we employ active learning (Cohn et al. 1994)

o see the learning curve by increasing the number of requests in

raining set. Active learning is a semi-supervised machine learn-

ng strategy to reduce human effort s in labeling training data (i.e.,
abel as fewer instances as possible) while still achieve a high ac-

uracy classifier. 

. Evaluation 

In this section, we evaluate the contribution made in this pa-

er by answering the five corresponding research questions with

xperiments results. Section 5.1 introduces data sets, experiments

nvironment and evaluation metrics. Section 5.2 presents results of

xperiments and answers research questions. Section 5.3 compares

ur research with related ones and discusses the implications of

his study. 

.1. Data collection 

We collect user requests of open source projects from source-

orge.net, whose user base consists of both software developers

nd ordinary software consumers. The major criteria for selecting

rojects are: 

(1) each project should have a high ranking in projects list pro-

vided by sourceforge.net, 

(2) each project should have more than 10 0 0 feature requests, 

(3) all projects should focus on different quality perspectives,

and 

(4) all projects should belong to different categories. 

By investigating other works in requirements engineering, we

nd that if we want to make the proposed approach convincible,

e need to at least collect experiment results from three projects.

ventually, three projects we chose from sourceforge.net are KeeP-

ss, Mumble and Winmerge . Here are brief introductions of them: 

(1) KeePass (Category: Business & Enterprise/Office/Business): a 

portable password manager for storing all passwords of dif-

ferent accounts. By using KeePass, one does not have to use

the same password over and over to avoid password man-

agement of a highly risky practice. One will never need to

worry that if someone gains her social website’s password,

he can also log into her email accounts or even bank ac-

counts. 

(2) Mumble (Category: Communication/Internet Phone): a low- 

latency but high quality voice chat software primarily in-

tended for using while playing online games. It provides ser-

vices not only for game players, but also for server maintain-

ers and software developers. One can download a Mumble

client version and connect to a server or download a Mum-

ble server version and setup in one’s own network. If one is

interested in software developing, he or she can also down-

load source code of Mumble, implement his or her creative

features, and build a new version. Users of Mumble are nor-

mal game players, system maintainers and software devel-

opers. 

(3) WinMerge (Category: System Administration/Storage/File 

Management): a differencing and merging tool for both fold-

ers and files, presenting differences in a visual text for-



116 C. Li et al. / The Journal of Systems and Software 138 (2018) 108–123 

Table 4 

Examples of project-specific keywords of each projects. 

Project Security Reliability Performance Lifecycle Usability Capability System Interface 

KeePass steal, 

authentication, 

keylogger, guess 

strong, powerful, 

lock, require 

separate, run, 

sometimes, start 

client, applet, 

detect, create 

note, header, 

column, confuse 

store, database, 

merge, expiration 

eWallet, 

PassKeeper, 

Truecrypt, 

convert 

Mumble information, 

pseudo, keychain, 

repeat 

Reconnect, 

acceptable, fuzzy, 

override 

kbite, infinite, 

megabyte, 

bottleneck 

Linux, ChromeOS, 

distribute, device 

enable, push, extra, 

username 

volume, channel, 

register, music 

Everquest, Warrock, 

Warcraft, Arma 

Winmerge write, save, disable, 

mode 

check, happen, 

ignore, change 

wait, much, 

improve, huge 

manual, stable, 

translator, 

register 

vertical, option, 

multiple, group 

differ, review, 

pattern, 

bookmark 

TortoiseSVN, 

LibcURL, Putty, 

Subclipse 

Table 5 

Statistics of each dataset: percentage of user requests of each type. 

Project Percentage of user requests of each type in each project (10 0 0 user requests for each project) 

Security Reliability Performance Lifecycle Usability Capability System Interface 

KeePass 10.1% 6.8% 1.9% 3.9% 34.3% 38.1% 4.9% 

Mumble 2.4% 6.3% 3.5% 12.3% 33.2% 33.7% 8.6% 

Winmerge 0.9% 7.4% 2% 5.7% 41% 40% 3% 
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mat that is easy to understand and handle. With this ba-

sic functionality, it is highly useful for determining what

has changed between project versions, and then merging

changes between different versions. 

After crawling all feature requests, we mined project-specific

keywords according to aforementioned approach and Table 4 are

examples of project-specific keywords for each projects. The next

step is to label data. 

Considering the scales of requirements used in related research,

such as Cleland-Huang et al. (2007) (i.e., 684 requirements in to-

tal) and Vlas and Robinson (2012) (i.e., the average number of fea-

ture requests of projects is 1035), we prepare 10 0 0 user requests

for each project in our data sets. Each request has more than ten

words. The start and end dates of requests are: (1) KeePass from

2003–10 to 2012–03, (2) Mumble from 2005–09 to 2016–06, and

(3) Winmerge from 20 0 0–12 to 2016–03. Each request is chosen

by one of the co-authors according to the principle that each re-

quest should talk about one single feature of the product. The re-

quests that mentions several features would be either split or just

drop out. At the same time, this co-author labeled all of these re-

quests. Upon all requests are selected and labeled, the other three

co-authors start to label them referring to definitions of request

types. After all co-authors finished, our labeled lists are merged in

two steps: (1) If three or four people label a request as LABEL1,

then the label for that request is LABEL1, (2) A discussion is held

to determine the request type based on labeled results. 

Table 5 shows the statistics on percentages of each type of re-

quests in eventual data sets of each project. Like in most software

projects, the most proposed user requests of the three projects are

about capability and usability. As shown in Table 5 , the percent-

age of capability and usability requests are 72.4%, 66.9% and 81%

in KeePass, Mumble and WinMerge respectively. Capability and us-

ability are the majority classes and others are the minority classes.

The main differences among these three projects lie in the distri-

bution of minority classes. 

5.2. Evaluation methodology and metrics 

To compare the learning-based classifiers fairly, we use imple-

mentations of machine learning algorithms in Weka . 4 For each
4 Weka is a collection of machine learning algorithms for data mining tasks and 

it can be found in: http://www.cs.waikato.ac.nz/ml/weka/downloading.html . 

 

i  

t  

t  
earning algorithm, we obtain its performance using five-fold

ross-validation experiments on each dataset. Specifically, we first

andomly partition each dataset into five equal-sized subsets (or

olds). Then, in each fold experiment, we reserve one of the five

olds for testing and use the remaining four folds as the training

et. We repeat this five times, each time using a different fold as a

est set. Finally, we average the result obtained over the 5-folds. 

We employ three evaluation metrics. First, we report overall ac-

uracy, which is the percentage of records in the test set correctly

lassified by a request classifier. Second, we compute the precision

nd recall for each request category. Given a request category c , its

ecall is the percentage of request records belonging to c that are

orrectly classified by the classifier; and its precision is the per-

entage of records classified by the system as c that indeed belong

o c . The F-measure for each request category is computed as 

 − measure = 2 ∗ precision ∗ recal l / ( precision + recall ) (4)

F-measure represents the balance between precision and recall.

he higher the F-measure of a category is, the better the perfor-

ance of the classifier on this category is. 

.3. Experiments and results 

This section presents the experiment results for answering re-

earch questions. Description after each research question consists

f two subsections, Method and Results . For the sake of conve-

ience, abbreviations of common terms are used in this section.

pecifically, WU stands for word unigrams, KU stands for keyword

nigrams, KF stands for keyword frequency, HP stands for heuristic

roperties of user requests, NB-B and NB-M stand for the binary

nd multi-class versions of Naïve Bayes respectively, and SVM-B

nd SVM-M stand for the binary and multi-class versions of Sup-

ort Vector Machine respectively. 

RQ1 . How well can those user requests be classified by only using

idely used simple text features as input of machine learning algo-

ithms, e.g. , word unigram and TF-IDF? 

Method . Train and test classifiers for each data set on fea-

ures of WU and TFIDF with different machine learning algorithms,

amely k-NN, NB-B, NB-M, SVM-B and SVM-M . 

Results . The highest classification accuracy is achieved by us-

ng TFIDF as features for KeePass, Mumble and Winmerge, and

heir corresponding accuracies are 68.1%, 67.5% and 72.2% respec-

ively. Different from the other two projects, it is SVM-M algorithm

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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Table 6 

Overall accuracies of learning-based classifiers using word unigram and TFIDF as features. 

Algorithm KeePass Mumble Winmerge 

WU TFIDF WU TFIDF WU TFIDF 

kNN (%) 39.4 39.1 35.3 35.7 48.6 44.8 

NB-B (%) 63.4 45.1 61.6 44.4 69.7 52.7 

NB-M (%) 63.7 46.2 62.9 48.6 68.4 56.4 

SVM-B (%) 67.5 68.1 62.4 67.5 71.2 70.8 

SVM-M (%) 65.8 67.2 63.3 66.1 70.7 72.2 

Table 7 

Results of basic and learning-based classifiers. (‘ KU ’ for keyword unigram, ‘ KF ’ for keyword frequency, ‘ NPS ’ and ‘ ALL ’ for ‘non-project-specific’ and ‘both non-project and 

project specific’ keywords, ‘ ↑ ’ represents ‘ increase’ ). 

Projects Keyword type Basic (%) k-NN(%) NB-B(%) NB-M(%) SVM-B(%) SVM-M(%) 

KU KF KU KF KU KF KU KF KU KF 

KeePass NPS 51.6 43.6 53.3 62.8 61.9 63.0 61.7 64.6 61.7 62.8 64.5 

ALL ↑ 52.2 46.2 54.6 65.2 65.7 64.3 65.6 66.3 70.2 65.3 69.5 

Mumble NPS 49.9 41.3 49.3 60.5 58.8 60.6 58.5 62.4 62.1 61.3 61.7 

ALL ↑ 67.2 48.8 65.7 67.1 70.7 67.8 70.7 66.3 71.4 65.9 72.7 

Winmerge NPS 53.9 52.5 62.1 67.2 67.8 67.6 67.9 69.0 68.1 67.0 70.0 

ALL ↑ 66.7 52.6 67.7 69.9 73.9 69.3 73.2 73.3 76.2 70.8 74.3 

Table 8 

Results of training with TFIDF, all keywords, and TFIDF plus all keywords separately. (only KF of keywords is used, ‘ ALL ’ for ‘both non-project and project specific’ keywords, 

‘ ↑ ’ represents ‘ increase’ ). 

Algorithm KeePass Mumble Winmerge 

TFIDF ALL ↑ TFIDF + ALL TFIDF ALL ↑ TFIDF + ALL TFIDF ALL ↑ TFIDF + ALL 

kNN (%) 39.1 54.6 45.8 35.7 65.7 38.2 44.8 67.7 49.6 

NB-B (%) 45.1 65.7 46.3 44.4 70.7 49.3 52.7 73.9 57.1 

NB-M (%) 46.2 65.6 57.2 48.6 70.7 59.4 56.4 73.2 66.2 

SVM-B (%) 68.1 70.2 74.6 ↑ 67.5 71.4 74.9 ↑ 70.8 76.2 78.4 ↑ 
SVM-M (%) 67.2 69.5 74.8 ↑ 66.1 72.7 74.2 ↑ 72.2 74.3 78.1 ↑ 
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chieving a better accuracy than SVM-B in Winmerge. Table 6

hows the details of the results. 

RQ2 . Will the classification accuracy of entire data sets as well as

hose of minority classes be improved by using keywords-based fea-

ures? 

Method . Use non-project-specific keywords to build basic and

earning-based classifiers separately. Then, add project- specific

nes to see if the accuracies are improved. At last, using TFIDF

ith all keywords as features together in training learning-based

lassifiers to see whether the accuracies are improved. Investigate

oncrete precisions ( P ) and recalls ( R ) of minority classes in of dif-

erent classifiers. 

Results . First, after adding project-specific keywords to key-

ords lists, the accuracies of both basic and learning-based clas-

ifiers will be improved ( Table 7 ). We also find that using key-

ord frequency will achieve better classification accuracies than

eyword unigram. Second, only using keywords as features will

mprove the accuracies, but use TFIDF with keywords will improve

he accuracies more significantly while training with SVM ( Table 8 ,

nly KF is used). At last, it shows that keywords-based features

elp achieve better performance on classifying minority classes

 Table 9 , train with SVM-B). 

RQ3 . To what extent are the proposed non-project-specific key-

ords accepted by others? Are they more effective than those pro-

osed by others? 

Method . We investigate fifty students’ attitudes on our keyword

ists in Software Institute of Nanjing University, China. We also col-

ect extra keywords that they want to add to our lists. Students

re junior and senior undergraduates, and graduates of the first

nd second year. At the beginning, we introduce definitions of the

even types of user requests defined by us as well as the docu-

ents referred by us to retrieve keywords to all students. Then,
e show them keywords found by us and let them mark the words

hat they agree with. At the same time, we let them propose new

eywords that they think are missed. Afterwards, we gather all

ew keywords proposed by students and again let each student

ark those they agree with. Eventually, we make statistics on the

urvey results. According to students’ feedbacks, we made changes

n our list and conduct new experiments with them. At last, we

ompared results of new experiments with former ones. 

Results . Table 10 shows that most keywords of each class pro-

osed by us are accepted by more than 40% students. Fig. 2 tells

hat for all data sets, the non-project-specific keywords proposed

y us really perform better than others. In Table 10 , the value

29 ′ in the green cell means that there are twenty-nine out of all

hirty-one Security keywords proposed by us also agreed by more

han or equal to 40% 

∗ 50 (i.e., 20) students; the value ‘2 ′ in the

ed cell means two words newly proposed by students are ac-

epted by 15 to 20 students and the words are “throughput” and

response” . Fig. 2 compares classification accuracies among using

ur keywords and revised ones. There are three kinds of revised

eywords lists based on Table 10 and they are: (1) remove key-

ords in U (i.e., proposed by us) where PoS < 20%, e.g., accident,

ut, not, instance and homepage , (2) all words in U adding those

n S (i.e., newly proposed by students) where 30 � PoS < 40%, e.g.,

ackup, steal, tolerance, throughput, response, migrate, beautiful, tap

nd touch , (3) add words in S where 20% � P oS < 30% in lists of (2),

.g., down, latency, rate, memory, upgrade, smooth, style, solve, imple-

ent, connection, supply and service . 

RQ4 . Which machine learning algorithm that widely used in re-

uirements classification do best here, k-nearest neighbor, Naïve Bayes

r Support Vector Machine? 

Method . Apply On-way ANOVA to classification accuracies de-

ived from classifiers trained by different learning algorithms.
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Table 9 

Comparison of precisions (P) and recalls (R) of minority classes derived by SVM-B. (only KF of keywords is used, ‘ ALL ’ for ‘both non-project and project specific’ keywords, 

‘ ↑ ’ represents ‘ increase’ ). 

Projects Features Security Reliability Performance Lifecycle System Interface 

P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) 

KeePass TFIDF 65.3 50.4 58.3 20.5 71.4 26.3 86.6 66.6 75 48.9 

TFIDF + ALL 75 62.3 64 47.1 63.6 36.8 94.3 84.6 80 65.3 

↑of F-measure 11.2 23.8 8.2 13.8 12.6 

Mumble TFIDF 0 0 74.2 41.2 80.7 60 70.4 56 82 63.9 

TFIDF + ALL 82.3 58.3 80 69.8 88.9 68.5 80.1 72.3 77.8 73.2 

↑of F-measure 68.2 21.5 8.6 13.6 3.6 

Winmerge TFIDF 0 0 58.1 24.3 63.6 35 70.2 57.9 81.8 60 

TFIDF + ALL 87.5 77.8 72.9 47.3 94.1 80 75.5 64.9 86.2 83.3 

↑of F-measure 82.4 23.1 41.3 6.4 15.5 

Table 10 

Statistics on acceptance of each type of keywords in this paper ( U ) and proposed by students ( S ). ( PoS means percentage of students; in “()” are concrete keywords). 

Fig. 2. Comparisons of accuracies among classifiers derived by training with different features with different lists of keywords (NPSK means non-project-specific keywords, 

ALLK means all of non-project-specific and project specific keywords). 
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Compared algorithms are: k-NN, NB-B, NB-M, SVM-B and SVM-M.

Each algorithm has ten accuracies on each project and they are

trained on features of: WU, TFIDF, KU - NPS, KU - ALL, KF - NPS, KF - ALL,

TFIDF plus KU - NPS, TFIDF plus KU - ALL, TFIDF plus KF - NPS , and TFIDF

plus KF - ALL . So, there are 30 data points for each compared algo-

rithm. First, we test Homogeneity of Variances of all five groups of

accuracies. Then choose one test method to conduct Post Hoc Tests.

The hypothesis of ANOVA is that there are no significant differ-

ences among classification accuracies of classifiers trained by dif-

ferent learning algorithms. 
Results . The answer to this question is that SVM does best in

lassifying user requests in crowdsourcing scenario. The signifi-

ant value of Homogeneity of Variances Test is 0.032 and it is

ess than 0.05. So, we apply one Nonparametric Test method, i.e.,

amhane, in Post Hoc Tests. Table 11 shows that binary version of

VM achieves significantly higher classification accuracies than k-

N and NB algorithms. However, there is no big differences be-

ween binary and multi-class version of SVM. 

RQ5 . Do the proposed Heuristic Properties of user requests influ-

nce the classification results? How do they influence? 
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Table 11 

Results of ANOVA among different learning algorithms: Post Hoc Tests using Tamhane. 

Table 12 

Comparisons among classification accuracies of HP related classifiers and non-HP related ones. (only keyword frequencies of keywords are used; ‘HP’ for heuristic properties, 

‘TALL’ for TFIDF plus all keywords, ‘TAHP’ for TALL plus HP). 

Algorithm KeePass Mumble Winmerge 

HP TFIDF TALL TAHP HP TFIDF TALL TAHP HP TFIDF TALL TAHP 

SVM-B (%) 64 68.1 74.6 75.9 50.3 67.5 74.9 75.5 59.6 70.8 78.4 79.6 

SVM-M (%) 64.3 67.2 74.8 75.6 52 66.1 74.2 73.8 58.8 72.2 78.1 78.4 
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Method . Add heuristic properties to feature set and compare

he classification accuracies with others. 

Results . Using Heuristic Properties as the single type of fea-

ures cannot achieve as high classification accuracies as TFIDF or

ll keywords can. But, after adding Heuristic Properties to TFIDF

nd keywords, most of the classification accuracies are improved

gain ( Table 12 , only SVM learning algorithms are used). 

RQ6 . Can keywords-based features help reduce the size of train-

ng sets to achieve the same accuracy derived by using widely used

eatures? 

Method . Apply active learning using SVM-M on keywords-based

eatures and TFIDF separately, and draw the learning curves for

oth of them as the training set expands. The feature, whose learn-

ng curve converges more quickly than the other, do better in re-

uce the size of training sets that needed for an acceptable classi-

cation accuracy. There are four steps in applying active learning: 

(1) train a classifier with labeled training data you have, 

(2) find the instance that the derived classifier has least confi-

dence to assign it among all unlabeled instances you have, 

(3) label this instance manually and add it to the training data, 

(4) repeat step 1 to 3 until the classifier achieve an acceptable

accuracy on testing data. 

Step 2 defines the approach to choose next instance to label in

ctive learning. There are different ways to choose next instance

ccording to different understanding of ‘least confidence’. We try

everal ways in our experiments and here introduce three widely

dopted ones, namely MinMax , MinGap and Random . First, for

ach unlabeled instance, use the current classifier to classify it and

robabilities for different classes would be derived. Then, conduct

ifferent ways to choose next instance to label: 

(1) MinMax : First, use the biggest probability to represent the

confidence of the classifier to correctly classify the unlabeled

instance. Then, among all unlabeled instances, choose the

one with the lowest confidence as the next instance to la-

bel. 

(2) MinGap : First, use the gap between the top two probabilities

to represent the confidence of the classifier to correctly clas-

sify the unlabeled instance. Then, choose the instance with

the lowest confidence as the next one to label. 

(3) Random : Randomly choose an unlabeled instance as the

next one to label. 

Results . The answer is that keywords-based features will help

educe the size of needed labeled data to train classifiers with high

ccuracies, comparing with TFIDF features. Fig. 3 shows the active
earning curves of three projects using different approaches to se-

ect next instance to label. In all projects, it reads that keywords-

ased features let the curves converge more quickly than TFIDF.

owever, different approaches for selecting next instances almost

ead to learning curves of a same converging speed. 

.4. Discussion 

We discuss the experimental results and implications of this

tudy, as well as comparisons between our research and related

nes in this section. 

.4.1. Meaning of results and implications 

Overall, the experimental results are encouraging. These results

rove that the non-project-specific keywords found by us are help-

ul in improving classification accuracies comparing with those de-

ived by using widely used text features in NLP research domain,

.e., word unigram and TFIDF. Besides, after adding project-specific

eywords, the performances of classifiers are further improved. Us-

ng keyword frequency (KF) to encode keywords-based features will

chieve better performance than keyword unigram (KU). Besides

eywords, the proposed Heuristic Properties of user requests are

lso effective in improving classification accuracies while using to-

ether with other text features. 

Since there are much less user requests of minority types than

thers, classifiers trained with simple text features performs bad

n classifying them. To the best of our knowledge, it is a big chal-

enge in machine learning applications to achieve high accuracies

f minority classes with unbalanced data sets. However, details

f precisions and recalls ( Table 9 ) of all minority classes derived

n our approach show that using both non-project-specific and

roject-specific keywords proposed in this paper as training fea-

ures to some extent help in overcoming bad classification results

n minority classes. Table 13 shows the precisions and recalls of

ll classes while use SVM-B to train on combination features of

FIDF, frequency of all keywords and heuristic properties. Consid-

ring these values of precisions, recalls and F-measures, we cannot

ven tell exactly which are minority classes without information

bout combination of data sets showing in Table 5 . 

The experimental results also show that the machine learning

lgorithm SVM is more suitable in classifying user requests than

ther common used ones, i.e., k-NN and Naïve Bayes. Training clas-

ifiers with the binary version of SVM and using features encoding

ll keywords, heuristic properties, and TFIDF achieves classification

ccuracies above 75% for all three datasets ( Table 12 ), which are

eally encouraging. 
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Fig. 3. Learning curves of applying Active Learning with different instance selection method. 

Table 13 

Statistics on precision (P), recall (R) and F-measure while training with SVM-B on all features. 

Dataset Security Reliability Performance Lifecycle Usability Capability System Interface 

P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) 

KeePass 86.0 73.3 66.7 50.0 100 31.6 88.9 82.1 74.6 77.0 73.4 81.9 88.1 75.5 

Mumble 77.3 70.8 86.3 69.8 83.3 57.1 79.1 70.7 77.9 78.6 69.8 79.5 78.4 67.4 

WinMerge 80.0 44.4 68.6 47.3 93.8 75.0 78.7 64.9 80.6 83.9 79.1 84.3 85.7 80.0 

Average 81.1 62.8 73.9 55.7 92.4 54.6 82.2 72.6 77.7 79.8 74.1 81.9 84.1 74.3 

F-measure 70.8 63.5 68.6 77.1 78.8 77.8 78.9 

Fig. 4. Learning curves of F-measures of several minority classes while applying active learning. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

l  

t  

m  

f

5

 

m  

c  

i  

q  

s  

m  

l  

2  

o  

a

 

Facing the large number of software artifacts, applying ma-

chine learning methods to automatically process them is strongly

desired. However, the biggest obstacle of employing machine-

learning methods is the enormous manual effort s involved in la-

beling those artifacts for training. So, the less labeled training data

is required, the better. This is why we conduct experiments to

answer RQ6 . Besides the overall classification accuracies, the pre-

cisions and recalls of minority classes should also be acceptable

while using reduced number of labeled data. Fig. 4 shows compar-

isons among learning curves of overall classification accuracies and

F-measures of all classes. The training algorithm is SVM-B and the

features are frequencies of all keywords. The bold black curves are

classification accuracies and other curves are F-measures of con-

crete classes. The bold yellow straight lines mark the converging

speeds of all curves. It tells that F-measures of all classes converge

similarly as the overall classification accuracies in all projects. (The

red line in figure of Winmerge represents F-measure of class Se-

curity . Since the number of security requests in Winmerge is too

few, i.e., 0.9%, the fluctuation of its F-measure is a bit wide.)

i  
ased on these results, we come to the conclusion: with active

earning strategy, using keywords as features actually can reduce

he needed labeled data for training an acceptable classifier. That

eans, using keywords-based features helps cut down manual ef-

orts in labeling data. 

.4.2. Comparison with related works 

In the analysis of the state of the art in automated require-

ents elicitation made by Meth et al. (2013) , identification and

ategorization of requirements is positioned between abstraction

dentification tools and requirements modeling tools. This means re-

uirements identification and categorization is a very important re-

earch direction to reduce the gap between natural language docu-

ents and structured software requirements. Among existing re-

ated works, research conducted by Cleland-Huang et al. (2006,

007 ) and Vlas and Robinson (2012) are the most similar ones to

urs. However, there still are significant differences between theirs

nd ours. 

Cleland-Huang et al. (20 06, 20 07 ) proposed an iterative train-

ng framework based on the analyst’s feedback for statements of
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on-functional requirements identification and classification. The

ore component of their classifier is a set of requirements indi-

ator terms (i.e., like k eywords in our paper) and the weights for

ach term belonging to each requirements class. The training pro-

ess is to train weights of each term. The basic work is to mine in-

icator terms. Different from our method, they retrieve terms from

raining data directly. However, the effectiveness of these keywords

elies on the number of instances labeled by humans as well as

he feedback derived from manually analyzing. Besides, it is not

entioned that if the terms found by them from one project can

lso be used in other projects. It is true that their approach can

e reused, but for different projects, different training set must

e organized from scratch. Differently, outputs of our research

re reusable non-project-specific keywords, methods for retrieving

roject-specific keywords and training strategies. This means there

s no need to label data for training sets while applying our ap-

roach to a new project. That is why we say that our approach

elps to reduce human efforts in user requests classification. In

ddition, they would classify one single requirement sentence into

everal different classes, while we only attach one type for each

equest. However, one of the most important factors that leads to

ifferences between works of Cleland-Huang et al. and ours is the

ifferences of application scenarios and data to be processed. They

dentify and classify requirements from requirements documents,

uch as specifications, but we classify product features proposed

y ordinary users. 

Vlas and Robinson (2012) proposed a rule-based user requests

lassification method. They also use user requests collected from

ourceforge.net as experimental data sets. Their classification re-

alls are between 31% and 52% and precisions are between 27%

nd 45%. Considering that they allow classifying one request into

ore than one class and use as many as 23 classification crite-

ia (we use only 7), that their classification results is much less

han ours (i.e., recalls are between 54.6% and 81.9%, and precisions

re between 73.9% and 92.4% on average for all data sets) makes

ense. The seven types used in this paper are groups of existing

equirements classes and we find that seven types are enough for

ost user requests processing scenarios according to its benefits

o software requirements engineering. In addition, different from

las and Robinson (2012) , who taking advantages of both linguistic

atterns (i.e., l -patterns, natural language commonly used for de-

cribing requirements) and requirements patterns (i.e., R-patterns,

eneric requirements templates) in processing user requests, we

ropose heuristic properties of user requests but not patterns of

equirements for classification of user requests. Because, there may

e a doubt about whether patterns derived from requirements can

e used to represent patterns of feature requests proposed by or-

inary users. 

. Threats to validity 

Threats to validity of this study are discussed in four aspects,

amely, data collecting, types of user requests, keywords mining

nd approach applicability. 

In data collecting, the categories of projects in sourceforge.net

re used to control the variety of projects. But there is no existing

atrix for calculating concrete values to measure the differences

mong projects. This is a potential threat to validity of the univer-

ality of the proposed approach. Besides, the manual user request

lassifications that needed for creating the training set and the test

et, as well as the selection of project-specific keywords are sub-

ect to experimenter bias as they are done by the co-authors of

his paper. Types of user request that used as classification targets

n this paper are defined manually by grouping existing require-

ents classes. Different people may have different ideas on group-

ng these classes and naming each type. In addition, non-project-
pecific keywords for each type of user request are found manu-

lly from requirements related documents, which is subject to re-

earcher bias. At last, since each user request is assigned to only

ne single class, it will achieve a higher overall classification accu-

acy if each input user request contains only one main topic corre-

ponding to one type of software requirement. In other words, it is

etter to apply our approach to user requests where each one rep-

esents only one single feature of software or product. However, it

s not to say that you must provide requests like we have selected

n the experiments, otherwise our approach cannot work. To apply

his approach in crowdsourcing requirements engineering projects,

t is better to tell users to make sure each request item contains

nly one expectation of one product feature before collecting user

equests. In our experiments, user requests are filtered manually

ccording to this criterion before added into the ultimate data sets,

hich is also a potential thread to validity of the experiments re-

ults. 

. Conclusion and future work 

This study contributes to the research and practice of user re-

uests processing in crowd-sourcing software requirements engi-

eering. Specifically, an automatic machine-learning-based method 

or classifying user requests on software or product features into

lasses of software requirements is proposed. This method can

argely reduce human efforts in dealing with the large amount

f user proposed requirements. Classifying requests collected from

he crowd before the prototype developed will help to generate

ormatted software requirements specifications. If the requests are

erived based on the experience of using a prototype or other ver-

ions of the product, e.g., open-source projects, classifying them

ould also help determine the releasing priority of proposed prod-

ct features. 

Since the proposed method is a machine-learning-based, natu-

al language text classification approach, the main challenges are

o find appropriate features to represent document items and ma-

hine learning algorithms to train classifiers. Our method uses

FIDF of words in corpus as basic document features. Then, pro-

ose non-project-specific keywords of different classes of software

equirements for encoding text features. Besides, we develop some

euristic properties as features by interpreting the connections be-

ween the sentence structures of user requests and the definition

f classes of software requirements. Another novel document fea-

ure used in our approach is encoding project-specific keywords.

eywords and heuristic properties derived from the definition of

lasses of software requirements are non-project-specific features,

hich means that the domain knowledge of the software projects

ould be omitted in classification if only those are used as doc-

ment features. By adding project-specific keywords, classification

ccuracies are improved. Project-specific keywords can be derived

rom project introduction by labeling them manually or automat-

cally from all user requests using the Word2vec technique. After

he document features are prepared, we experimented with differ-

nt machine learning algorithms to train classifiers and found that

VM did the best using the proposed features. The average accu-

acy of all datasets used in the experiments was 77%. Our method

lso performed well in handling imbalanced requests classes. For

ll classes, recall levels were between 54.6% and 81.9% and pre-

ision levels were between 73.9% and 92.4% on average. With ac-

ive learning, our approach could reduce human effort s in label-

ng training instances while maintaining high classification perfor-

ance. 

We envisage future research in multiple directions. First, we

ill investigate other potential document features that would im-

rove classification performance. Second, since experimental re-

ults show that it is better to reserve ‘stop words’ in user requests
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for classification, we would like to investigate why and try to find

which ‘stop words’ have higher influence on classification accu-

racies in the future. Besides, how to automatically mine reusable

and effective non-project-specific keywords from tremendous re-

quirements related corpus is also a future work. Better reusable

approaches for mining project-specific keywords from large num-

ber of unlabeled user requests are also worthy to research. As il-

lustrated in Threads to Validity, it is better to apply our approach

to classify user proposal that contains one single request on the

product. So, how to split complex user proposals containing multi-

ple requests on software features into simple ones that related to

one single requested feature is also a future research direction. 
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